Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1865(6): 129891, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33689830

RESUMO

BACKGROUND: The epithelium forms a protective barrier against external biological, chemical and physical insults. So far, AFM-based, micro-mechanical measurements have only been performed on single cells and confluent cells, but not yet on cells in mature layers. METHODS: Using a combination of atomic force, fluorescence and confocal microscopy, we determined the changes in stiffness, morphology and actin distribution of human mammary epithelial cells (HMECs) as they transition from single cells to confluency to a mature layer. RESULTS: Single HMECs have a tall, round (planoconvex) morphology, have actin stress fibers at the base, have diffuse cortical actin, and have a stiffness of 1 kPa. Confluent HMECs start to become flatter, basal actin stress fibers start to disappear, and actin accumulates laterally where cells abut. Overall stiffness is still 1 kPa with two-fold higher stiffness in the abutting regions. As HMECs mature and form multilayered structures, cells on apical surfaces become flatter (apically more level), wider, and seven times stiffer (mean, 7 kPa) than single and confluent cells. The main drivers of these changes are actin filaments, as cells show strong actin accumulation in the regions where cells adjoin, and in the apical regions. CONCLUSIONS: HMECs stiffen, flatten and redistribute actin upon transiting from single cells to mature, confluent layers. GENERAL SIGNIFICANCE: Our findings advance the understanding of breast ductal morphogenesis and mechanical homeostasis.


Assuntos
Citoesqueleto de Actina/fisiologia , Células Epiteliais/citologia , Glândulas Mamárias Humanas/citologia , Organogênese , Células Cultivadas , Células Epiteliais/fisiologia , Feminino , Humanos , Glândulas Mamárias Humanas/fisiologia , Microscopia de Força Atômica
2.
Redox Biol ; 20: 442-450, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423533

RESUMO

BACKGROUND: Nitrite is reduced by heme-proteins and molybdenum-containing enzymes to form the important signaling molecule nitric oxide (NO), mediating NO signaling. Substantial evidence suggests that deoxygenated hemoglobin within red blood cells (RBCs) is the main erythrocytic protein responsible for mediating nitrite-dependent NO signaling. In other work, infrared and far red light have been shown to have therapeutic potential that some attribute to production of NO. Here we explore whether a combination of nitrite and far red light treatment has an additive effect in NO-dependent processes, and whether this effect is mediated by RBCs. METHODS AND RESULTS: Using photoacoustic imaging in a rat model as a function of varying inspired oxygen, we found that far red light (660 nm, five min. exposure) and nitrite feeding (three weeks in drinking water at 100 mg/L) each separately increased tissue oxygenation and vessel diameter, and the combined treatment was additive. We also employed inhibition of human platelet activation measured by flow cytometry to assess RBC-dependent nitrite bioactivation and found that far red light dramatically potentiates platelet inhibition by nitrite. Blocking RBC-surface thiols abrogated these effects of nitrite and far-red light. RBC-dependent production of NO was also shown to be enhanced by far red light using a chemiluminescence-based nitric oxide analyzer. In addition, RBC-dependent bioactivation of nitrite led to prolonged lag times for clotting in platelet poor plasma that was enhanced by exposure to far red light. CONCLUSIONS: Our results suggest that nitrite leads to the formation of a photolabile RBC surface thiol-bound species such as an S-nitrosothiol or heme-nitrosyl (NO-bound heme) for which far red light enhances NO signaling. These findings expand our understanding of RBC-mediated NO production from nitrite. This pathway of NO production may have therapeutic potential in several applications including thrombosis, and, thus, warrants further study.


Assuntos
Eritrócitos/metabolismo , Eritrócitos/efeitos da radiação , Luz , Nitritos/metabolismo , Animais , Plaquetas/metabolismo , Plaquetas/efeitos da radiação , Membrana Eritrocítica/metabolismo , Heme/metabolismo , Microvasos/metabolismo , Modelos Biológicos , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Ativação Plaquetária/efeitos da radiação , Ratos , Compostos de Sulfidrila/metabolismo
3.
PLoS One ; 12(1): e0170414, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28125613

RESUMO

The interior of cells is a highly complex medium, containing numerous organelles, a matrix of different fibers and a viscous, aqueous fluid of proteins and small molecules. The interior of cells is also a highly dynamic medium, in which many components move, either by active transport or passive diffusion. The mobility and localization of proteins inside cells can provide important insights into protein function and also general cellular properties, such as viscosity. Neoplastic transformation affects numerous cellular properties, and our goal was to investigate the diffusional and binding behavior of the important mismatch repair (MMR) protein MSH2 in live human cells at various stages of neoplastic transformation. Toward this end, noncancerous, immortal, tumorigenic, and metastatic mammary epithelial cells were transfected with EGFP and EGFP-tagged MSH2. MSH2 forms two MMR proteins (MutSα and MutSß) and we assume MSH2 is in the complex MutSα, though our results are similar in either case. Unlike the MutS complexes that bind to nuclear DNA, EGFP diffuses freely. EGFP and MutSα-EGFP diffusion coefficients were determined in the cytoplasm and nucleus of each cell type using fluorescence recovery after photobleaching. Diffusion coefficients were 14-24 µm2/s for EGFP and 3-7 µm2/s for MutSα-EGFP. EGFP diffusion increased in going from noncancerous to immortal cells, indicating a decrease in viscosity, with smaller changes in subsequent stages. MutSα produces an effective diffusion coefficient that, coupled with the free EGFP diffusion measurements, can be used to extract a pure diffusion coefficient and a pseudo-equilibrium constant K*. The MutSα nuclear K* increased sixfold in the first stage of cancer and then decreased in the more advanced stages. The ratio of nuclear to cytoplasmic K*for MutSα increased almost two orders of magnitude in going from noncancerous to immortal cells, suggesting that this quantity may be a sensitive metric for recognizing the onset of cancer.


Assuntos
Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Pareamento Incorreto de Bases , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Citoplasma/metabolismo , Reparo de Erro de Pareamento de DNA , Feminino , Humanos , Ligação Proteica , Transporte Proteico
4.
Biomaterials ; 49: 27-36, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25725552

RESUMO

Protein based polymers provide an exciting and complex landscape for tunable natural biomaterials through modulation of molecular level interactions. Here we demonstrate the ability to modify protein polymer structural and mechanical properties at multiple length scales by molecular 'interference' of fibrin's native polymerization mechanism. We have previously reported that engagement of fibrin's polymerization 'hole b', also known as 'b-pockets', through PEGylated complementary 'knob B' mimics can increase fibrin network porosity but also, somewhat paradoxically, increase network stiffness. Here, we explore the possible mechanistic underpinning of this phenomenon through characterization of the effects of knob B-fibrin interaction at multiple length scales from molecular to bulk polymer. Despite its weak monovalent binding affinity for fibrin, addition of both knob B and PEGylated knob B at concentrations near the binding coefficient, Kd, increased fibrin network porosity, consistent with the reported role of knob B-hole b interactions in promoting lateral growth of fibrin fibers. Addition of PEGylated knob B decreases the extensibility of single fibrin fibers at concentrations near its Kd but increases extensibility of fibers at concentrations above its Kd. The data suggest this bimodal behavior is due to the individual contributions knob B, which decreases fiber extensibility, and PEG, which increase fiber extensibility. Taken together with laser trap-based microrheological and bulk rheological analyses of fibrin polymers, our data strongly suggests that hole b engagement increases in single fiber stiffness that translates to higher storage moduli of fibrin polymers despite their increased porosity. These data point to possible strategies for tuning fibrin polymer mechanical properties through modulation of single fiber mechanics.


Assuntos
Materiais Biocompatíveis/química , Fibrina/química , Teste de Materiais , Polimerização , Coagulação Sanguínea , Humanos , Cinética , Microscopia Confocal , Peptídeos/química , Polietilenoglicóis/química , Reologia , Estresse Mecânico , Ressonância de Plasmônio de Superfície
5.
Biochim Biophys Acta ; 1853(2): 338-47, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450979

RESUMO

As the second most prevalent hematologic malignancy, multiple myeloma (MM) remains incurable and relapses due to intrinsic or acquired drug resistance. Therefore, new therapeutic strategies that target molecular mechanisms responsible for drug resistance are attractive. Interactions of tumor cells with their surrounding microenvironment impact tumor initiation, progression and metastasis, as well as patient prognosis. This cross-talk is bidirectional. Tumor cells can also attract or activate tumor-associated stromal cells by releasing cytokines to facilitate their growth, invasion and metastasis. The effect of myeloma cells on bone marrow stromal cells (BMSCs) has not been well studied. In our study, we found that higher stiffness of BMSCs was not a unique characteristic of BMSCs from MM patients (M-BMSCs). BMSCs from MGUS (monoclonal gammopathy of undetermined significance) patients were also stiffer than the BMSCs from healthy volunteers (N-BMSCs). The stiffness of M-BMSCs was enhanced when cocultured with myeloma cells. In contrast, no changes were seen in myeloma cell-primed MGUS- and N-BMSCs. Interestingly, our data indicated that CD138⁻ myeloma cells, but not CD138⁺ cells, regulated M-BMSC stiffness. SDF-1 was highly expressed in the CD138⁻ myeloma subpopulation compared with that in CD138⁺ cells. Inhibition of SDF-1 using AMD3100 or knocking-down CXCR4 in M-BMSCs blocked CD138⁻ myeloma cells-induced increase in M-BMSC stiffness, suggesting a crucial role of SDF-1/CXCR4. AKT inhibition attenuated SDF-1-induced increases in M-BMSC stiffness. These findings demonstrate, for the first time, CD138⁻ myeloma cell-directed cross-talk with BMSCs and reveal that CD138⁻ myeloma cells regulate M-BMSC stiffness through SDF-1/CXCR4/AKT signaling.


Assuntos
Quimiocina CXCL12/metabolismo , Células-Tronco Mesenquimais/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CXCR4/metabolismo , Sindecana-1/metabolismo , Fenômenos Biomecânicos , Ativação Enzimática/efeitos dos fármacos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Gamopatia Monoclonal de Significância Indeterminada/metabolismo , Gamopatia Monoclonal de Significância Indeterminada/patologia , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
6.
Cell Biochem Biophys ; 67(3): 1103-13, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23636685

RESUMO

We used atomic force microscopy (AFM) to study the dose-dependent change in conformational and mechanical properties of DNA treated with PT-ACRAMTU ([PtCl(en)(ACRAMTU-S)](NO3)2, (en = ethane-1,2-diamine, ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea. PT-ACRAMTU is the parent drug of a family of non-classical platinum-based agents that show potent activity in non-small cell lung cancer in vitro and in vivo. Its acridine moiety intercalates between DNA bases, while the platinum group forms mono-adducts with DNA bases. AFM images show that PT-ACRAMTU causes some DNA looping and aggregation at drug-to-base pair ratio (r b) of 0.1 and higher. Very significant lengthening of the DNA was observed with increasing doses of PT-ACRAMTU, and reached saturation at an r b of 0.15. At r b of 0.1, lengthening was 0.6 nm per drug molecule, which is more than one fully stretched base pair stack can accommodate, indicating that ACRAMTU also disturbs the stacking of neighboring base pair stacks. Analysis of the AFM images based on the worm-like chain (WLC) model showed that PT-ACRAMTU did not change the flexibility of (non-aggregated) DNA, despite the extreme lengthening. The persistence length of untreated DNA and DNA treated with PT-ACRAMTU was in the range of 49-65 nm. Potential consequences of the perturbations caused by this agent for the recognition and processing of the DNA adducts it forms are discussed.


Assuntos
Acridinas/química , Acridinas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , DNA/química , DNA/efeitos dos fármacos , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Platina/química , Tioureia/análogos & derivados , Acridinas/síntese química , Antineoplásicos/síntese química , DNA/metabolismo , Adutos de DNA/química , Quebras de DNA de Cadeia Dupla , Microscopia de Força Atômica , Compostos Organoplatínicos/síntese química , Tamanho da Partícula , Tioureia/síntese química , Tioureia/química , Tioureia/farmacologia , Ureia/análogos & derivados , Ureia/química
7.
ACS Nano ; 3(9): 2667-73, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19655728

RESUMO

Nanoparticles, including multiwalled carbon nanotubes (MWNTs), strongly absorb near-infrared (nIR) radiation and efficiently convert absorbed energy to released heat which can be used for localized hyperthermia applications. We demonstrate for the first time that DNA-encasement increases heat emission following nIR irradiation of MWNTs, and DNA-encased MWNTs can be used to safely eradicate a tumor mass in vivo. Upon irradiation of DNA-encased MWNTs, heat is generated with a linear dependence on irradiation time and laser power. DNA-encasement resulted in a 3-fold reduction in the concentration of MWNTs required to impart a 10 degrees C temperature increase in bulk solution temperature. A single treatment consisting of intratumoral injection of MWNTs (100 microL of a 500 microg/mL solution) followed by laser irradiation at 1064 nm, 2.5 W/cm(2) completely eradicated PC3 xenograft tumors in 8/8 (100%) of nude mice. Tumors that received only MWNT injection or laser irradiation showed growth rates indistinguishable from nontreated control tumors. Nonmalignant tissues displayed no long-term damage from treatment. The results demonstrate that DNA-encased MWNTs are more efficient at converting nIR irradiation into heat compared to nonencased MWNTs and that DNA-encased MWNTs can be used safely and effectively for the selective thermal ablation of malignant tissue in vivo.


Assuntos
DNA/química , Temperatura Alta , Terapia a Laser , Nanotubos de Carbono/química , Neoplasias/patologia , Neoplasias/cirurgia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Estudos de Viabilidade , Masculino , Camundongos , Solubilidade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA