Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 907: 168119, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37884142

RESUMO

BACKGROUND: Limited research has examined associations between exposure to ambient temperature, air pollution, and kidney function or injury during the preadolescent period. We examined associations between exposure to ambient temperature and particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) with preadolescent estimated glomerular filtration rate (eGFR) and urinary kidney injury biomarkers. METHODS: Participants included 437 children without cardiovascular or kidney disease enrolled in the Programming Research in Obesity, Growth, Environment and Social Stressors birth cohort study in Mexico City. eGFR and urinary kidney injury biomarkers were assessed at 8-12 years. Validated satellite-based spatio-temporal models were used to estimate mean daily temperature and PM2.5 levels at each participant's residence 7- and 30-days prior to the date of visit. Linear regression and distributed lag nonlinear models (DLNM) were used to examine associations between daily mean temperature and PM2.5 exposure and kidney outcomes, adjusted for covariates. RESULTS: In single linear regressions, higher seven-day average PM2.5 was associated with higher urinary alpha-1-microglobulin and eGFR. In DLNM analyses, higher temperature exposure in the seven days prior to date of visit was associated with a decrease in urinary cystatin C of -0.56 ng/mL (95 % confidence interval (CI): -1.08, -0.04) and in osteopontin of -0.08 ng/mL (95 % CI: -0.15, -0.001). PM2.5 exposure over the seven days prior to date of visit was associated with an increase in eGFR of 1.77 mL/min/1.73m2 (95 % CI: 0.55, 2.99) and urinary cystatin C of 0.19 ng/mL (95 % CI: 0.03, 0.35). CONCLUSIONS: Recent exposure to ambient temperature and PM2.5 were associated with increased and decreased urinary kidney injury biomarkers that may reflect subclinical glomerular or tubular injury in children. Further research is required to assess environmental exposures and worsening subclinical kidney injury across development.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Criança , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Cistatina C , Estudos de Coortes , Temperatura , Poluição do Ar/análise , Exposição Ambiental/análise , Biomarcadores , Glomérulos Renais
2.
Environ Int ; 165: 107298, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597113

RESUMO

BACKGROUND: Air pollution has been linked to obesity while higher ambient temperatures typically reduce metabolic demand in a compensatory manner. Both relationships may impact glucose metabolism, thus we examined the association between intermediate- and long-term exposure to fine particulate matter (PM2.5) and ambient temperature and glycated hemoglobin(HbA1c), a longer-term marker of glucose control. METHODS: We assessed 3-month, 6-month, and 12-month average air pollution and ambient temperature at 1-km2 spatial resolution via satellite remote sensing models (2013-2019), and assessed HbA1c at four, six, and eight years postpartum in women enrolled in the Programming Research in Obesity, Growth, Environment and Social Stressors (PROGRESS) cohort based in Mexico City. PM2.5 and ambient temperature were matched to participants' addresses and confirmed by GPS tracker. Using linear mixed-effects models, we examined the association between 3-month, 6-month, and 12-month average PM2.5 and ambient temperature with repeated log-transformed HbA1c values. All models included a random intercept for each woman and were adjusted for calendar year, season, and individual-level confounders (age, marital status, smoking, alcohol consumption level, and education level). RESULTS: We analyzed 1,265 HbA1c measurements of 484 women. Per 1 µg/m3 increase in 3-month and 6-month PM2.5, HbA1c levels increased by 0.28% (95% confidence interval (95 %CI): 0.14, 0.42%) and 0.28% (95 %CI: 0.04, 0.52%) respectively. No association was seen for 12-month average PM2.5. Per 1 °C increase in ambient temperature, HbA1c levels decreased by 0.63% (95 %CI: -1.06, -0.21%) and 0.61% (95 %CI: -1.08, -0.13%), while the 12-month average again is not associated with HbA1c. CONCLUSIONS: Intermediate-term exposure to PM2.5 and ambient temperature are associated with opposing changes in HbA1c levels, in this region of high PM2.5 and moderate temperature fluctuation. These effects, measurable in mid-adult life, may portend future risk of type 2 diabetes and possible heart disease.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Diabetes Mellitus Tipo 2 , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Feminino , Hemoglobinas Glicadas , Humanos , Obesidade , Material Particulado/efeitos adversos , Material Particulado/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA