RESUMO
Obstructive sleep apnea (OSA) is a prevalent respiratory condition in children and is characterized by partial or complete obstruction of the upper airway during sleep. The respiratory events in OSA induce transient alterations of the cardiovascular system that ultimately can lead to increased cardiovascular risk in affected children. Therefore, a timely and accurate diagnosis is of utmost importance. However, polysomnography (PSG), the standard diagnostic test for pediatric OSA, is complex, uncomfortable, costly, and relatively inaccessible, particularly in low-resource environments, thereby resulting in substantial underdiagnosis. Here, we propose a novel deep-learning approach to simplify the diagnosis of pediatric OSA using raw electrocardiogram tracing (ECG). Specifically, a new convolutional neural network (CNN)-based regression model was implemented to automatically predict pediatric OSA by estimating its severity based on the apnea-hypopnea index (AHI) and deriving 4 OSA severity categories. For this purpose, overnight ECGs from 1,610 PSG recordings obtained from the Childhood Adenotonsillectomy Trial (CHAT) database were used. The database was randomly divided into approximately 60%, 20%, and 20% for training, validation, and testing, respectively. The diagnostic performance of the proposed CNN model largely outperformed the most accurate previous algorithms that relied on ECG-derived features (4-class Cohen's kappa coefficient of 0.373 versus 0.166). Specifically, for AHI cutoff values of 1, 5, and 10 events/hour, the binary classification achieved sensitivities of 84.19%, 76.67%, and 53.66%; specificities of 46.15%, 91.39%, and 98.06%; and accuracies of 75.92%, 86.96%, and 91.97%, respectively. Therefore, pediatric OSA can be readily identified by our proposed CNN model, which provides a simpler, faster, and more accessible diagnostic test that can be implemented in clinical practice.
Assuntos
Apneia Obstrutiva do Sono , Humanos , Criança , Apneia Obstrutiva do Sono/diagnóstico , Redes Neurais de Computação , Algoritmos , Polissonografia , Eletrocardiografia , SonoRESUMO
Automatic deep-learning models used for sleep scoring in children with obstructive sleep apnea (OSA) are perceived as black boxes, limiting their implementation in clinical settings. Accordingly, we aimed to develop an accurate and interpretable deep-learning model for sleep staging in children using single-channel electroencephalogram (EEG) recordings. We used EEG signals from the Childhood Adenotonsillectomy Trial (CHAT) dataset (n = 1637) and a clinical sleep database (n = 980). Three distinct deep-learning architectures were explored to automatically classify sleep stages from a single-channel EEG data. Gradient-weighted Class Activation Mapping (Grad-CAM), an explainable artificial intelligence (XAI) algorithm, was then applied to provide an interpretation of the singular EEG patterns contributing to each predicted sleep stage. Among the tested architectures, a standard convolutional neural network (CNN) demonstrated the highest performance for automated sleep stage detection in the CHAT test set (accuracy = 86.9% and five-class kappa = 0.827). Furthermore, the CNN-based estimation of total sleep time exhibited strong agreement in the clinical dataset (intra-class correlation coefficient = 0.772). Our XAI approach using Grad-CAM effectively highlighted the EEG features associated with each sleep stage, emphasizing their influence on the CNN's decision-making process in both datasets. Grad-CAM heatmaps also allowed to identify and analyze epochs within a recording with a highly likelihood to be misclassified, revealing mixed features from different sleep stages within these epochs. Finally, Grad-CAM heatmaps unveiled novel features contributing to sleep scoring using a single EEG channel. Consequently, integrating an explainable CNN-based deep-learning model in the clinical environment could enable automatic sleep staging in pediatric sleep apnea tests.
Assuntos
Aprendizado Profundo , Síndromes da Apneia do Sono , Criança , Humanos , Inteligência Artificial , Sono , Síndromes da Apneia do Sono/diagnóstico , EletroencefalografiaRESUMO
Heart rate variability (HRV) is modulated by sleep stages and apneic events. Previous studies in children compared classical HRV parameters during sleep stages between obstructive sleep apnea (OSA) and controls. However, HRV-based characterization incorporating both sleep stages and apneic events has not been conducted. Furthermore, recently proposed novel HRV OSA-specific parameters have not been evaluated. Therefore, the aim of this study was to characterize and compare classic and pediatric OSA-specific HRV parameters while including both sleep stages and apneic events. A total of 1610 electrocardiograms from the Childhood Adenotonsillectomy Trial (CHAT) database were split into 10-min segments to extract HRV parameters. Segments were characterized and grouped by sleep stage (wake, W; non-rapid eye movement, NREMS; and REMS) and presence of apneic events (under 1 apneic event per segment, e/s; 1-5 e/s; 5-10 e/s; and over 10 e/s). NREMS showed significant changes in HRV parameters as apneic event frequency increased, which were less marked in REMS. In both NREMS and REMS, power in BW2, a pediatric OSA-specific frequency domain, allowed for the optimal differentiation among segments. Moreover, in the absence of apneic events, another defined band, BWRes, resulted in best differentiation between sleep stages. The clinical usefulness of segment-based HRV characterization was then confirmed by two ensemble-learning models aimed at estimating apnea-hypopnea index and classifying sleep stages, respectively. We surmise that basal sympathetic activity during REMS may mask apneic events-induced sympathetic excitation, thus highlighting the importance of incorporating sleep stages as well as apneic events when evaluating HRV in pediatric OSA.
Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Humanos , Criança , Frequência Cardíaca/fisiologia , Polissonografia , Fases do Sono/fisiologiaRESUMO
The overnight polysomnography shows a range of drawbacks to diagnose obstructive sleep apnea (OSA) that have led to the search for artificial intelligence-based alternatives. Many classic machine learning methods have been already evaluated for this purpose. In this chapter, we show the main approaches found in the scientific literature along with the most used data to develop the models, useful and large easily available databases, and suitable methods to assess performances. In addition, a range of results from selected studies are presented as examples of these methods. Very high diagnostic performances are reported in these results regardless of the approaches taken. This leads us to conclude that conventional machine learning methods are useful techniques to develop new OSA diagnosis simplification proposals and to act as benchmark for other more recent methods such as deep learning.
Assuntos
Inteligência Artificial , Apneia Obstrutiva do Sono , Humanos , Aprendizado de Máquina , Polissonografia/métodos , Apneia Obstrutiva do Sono/diagnósticoRESUMO
The gold standard approach to diagnose obstructive sleep apnea (OSA) in children is overnight in-lab polysomnography (PSG), which is labor-intensive for clinicians and onerous to healthcare systems and families. Simplification of PSG should enhance availability and comfort, and reduce complexity and waitlists. Airflow (AF) and oximetry (SpO2) signals summarize most of the information needed to detect apneas and hypopneas, but automatic analysis of these signals using deep-learning algorithms has not been extensively investigated in the pediatric context. The aim of this study was to evaluate a convolutional neural network (CNN) architecture based on these two signals to estimate the severity of pediatric OSA. PSG-derived AF and SpO2 signals from the Childhood Adenotonsillectomy Trial (CHAT) database (1638 recordings), as well as from a clinical database (974 recordings), were analyzed. A 2D CNN fed with AF and SpO2 signals was implemented to estimate the number of apneic events, and the total apnea-hypopnea index (AHI) was estimated. A training-validation-test strategy was used to train the CNN, adjust the hyperparameters, and assess the diagnostic ability of the algorithm, respectively. Classification into four OSA severity levels (no OSA, mild, moderate, or severe) reached 4-class accuracy and Cohen's Kappa of 72.55% and 0.6011 in the CHAT test set, and 61.79% and 0.4469 in the clinical dataset, respectively. Binary classification accuracy using AHI cutoffs 1, 5 and 10 events/h ranged between 84.64% and 94.44% in CHAT, and 84.10%-90.26% in the clinical database. The proposed CNN-based architecture achieved high diagnostic ability in two independent databases, outperforming previous approaches that employed SpO2 signals alone, or other classical feature-engineering approaches. Therefore, analysis of AF and SpO2 signals using deep learning can be useful to deploy reliable computer-aided diagnostic tools for childhood OSA.
Assuntos
Síndromes da Apneia do Sono , Apneia Obstrutiva do Sono , Criança , Humanos , Redes Neurais de Computação , Oximetria , Polissonografia , Síndromes da Apneia do Sono/diagnóstico , Apneia Obstrutiva do Sono/diagnósticoRESUMO
STUDY OBJECTIVES: Pediatric obstructive sleep apnea (OSA) affects cardiac autonomic regulation, altering heart rate variability (HRV). Although changes in classical HRV parameters occur after OSA treatment, they have not been evaluated as reporters of OSA resolution. Specific frequency bands (named BW1, BW2, and BWRes) have been recently identified in OSA. We hypothesized that changes with treatment in these spectral bands can reliably identify changes in OSA severity and reflect OSA resolution. METHODS: Four hundred and four OSA children (5-9.9 years) from the prospective Childhood Adenotonsillectomy Trial were included; 206 underwent early adenotonsillectomy (eAT), while 198 underwent watchful waiting with supportive care (WWSC). HRV changes from baseline to follow-up were computed for classical and OSA-related frequency bands. Causal mediation analysis was conducted to evaluate how treatment influences HRV through mediators such as OSA resolution and changes in disease severity. Disease resolution was initially assessed by considering only obstructive events, and was followed by adding central apneas to the analyses. RESULTS: Treatment, regardless of eAT or WWSC, affects HRV activity, mainly in the specific frequency band BW2 (0.028-0.074 Hz). Furthermore, only changes in BW2 were specifically attributable to all OSA resolution mediators. HRV activity in BW2 also showed statistically significant differences between resolved and non-resolved OSA. CONCLUSIONS: OSA treatment affects HRV activity in terms of change in severity and disease resolution, especially in OSA-related BW2 frequency band. This band allowed to differentiate HRV activity between children with and without resolution, so we propose BW2 as potential biomarker of pediatric OSA resolution. CLINICAL TRIAL REGISTRATION: Childhood Adenotonsillectomy Trial, NCT00560859, https://sleepdata.org/datasets/chat.
Assuntos
Apneia Obstrutiva do Sono , Tonsilectomia , Adenoidectomia , Biomarcadores , Criança , Pré-Escolar , Frequência Cardíaca/fisiologia , Humanos , Estudos ProspectivosRESUMO
Pediatric obstructive sleep apnea (OSA) is a breathing disorder that alters heart rate variability (HRV) dynamics during sleep. HRV in children is commonly assessed through conventional spectral analysis. However, bispectral analysis provides both linearity and stationarity information and has not been applied to the assessment of HRV in pediatric OSA. Here, this work aimed to assess HRV using bispectral analysis in children with OSA for signal characterization and diagnostic purposes in two large pediatric databases (0-13 years). The first database (training set) was composed of 981 overnight ECG recordings obtained during polysomnography. The second database (test set) was a subset of the Childhood Adenotonsillectomy Trial database (757 children). We characterized three bispectral regions based on the classic HRV frequency ranges (very low frequency: 0-0.04 Hz; low frequency: 0.04-0.15 Hz; and high frequency: 0.15-0.40 Hz), as well as three OSA-specific frequency ranges obtained in recent studies (BW1: 0.001-0.005 Hz; BW2: 0.028-0.074 Hz; BWRes: a subject-adaptive respiratory region). In each region, up to 14 bispectral features were computed. The fast correlation-based filter was applied to the features obtained from the classic and OSA-specific regions, showing complementary information regarding OSA alterations in HRV. This information was then used to train multi-layer perceptron (MLP) neural networks aimed at automatically detecting pediatric OSA using three clinically defined severity classifiers. Both classic and OSA-specific MLP models showed high and similar accuracy (Acc) and areas under the receiver operating characteristic curve (AUCs) for moderate (classic regions: Acc = 81.0%, AUC = 0.774; OSA-specific regions: Acc = 81.0%, AUC = 0.791) and severe (classic regions: Acc = 91.7%, AUC = 0.847; OSA-specific regions: Acc = 89.3%, AUC = 0.841) OSA levels. Thus, the current findings highlight the usefulness of bispectral analysis on HRV to characterize and diagnose pediatric OSA.
RESUMO
BACKGROUND: Classic spectral analysis of heart rate variability (HRV) in pediatric sleep apnea-hypopnea syndrome (SAHS) traditionally evaluates the very low frequency (VLF: 0-0.04 Hz), low frequency (LF: 0.04-0.15 Hz), and high frequency (HF: 0.15-0.40 Hz) bands. However, specific SAHS-related frequency bands have not been explored. METHODS: One thousand seven hundred and thirty-eight HRV overnight recordings from two pediatric databases (0-13 years) were evaluated. The first one (981 children) served as training set to define new HRV pediatric SAHS-related frequency bands. The associated relative power (RP) were computed in the test set, the Childhood Adenotonsillectomy Trial database (CHAT, 757 children). Their relationships with polysomnographic variables and diagnostic ability were assessed. RESULTS: Two new specific spectral bands of pediatric SAHS within 0-0.15 Hz were related to duration of apneic events, number of awakenings, and wakefulness after sleep onset (WASO), while an adaptive individual-specific new band from HF was related to oxyhemoglobin desaturations, arousals, and WASO. Furthermore, these new spectral bands showed improved diagnostic ability than classic HRV. CONCLUSIONS: Novel spectral bands provide improved characterization of pediatric SAHS. These findings may pioneer a better understanding of the effects of SAHS on cardiac function and potentially serve as detection biomarkers. IMPACT: New specific heart rate variability (HRV) spectral bands are identified and characterized as potential biomarkers in pediatric sleep apnea. Spectral band BW1 (0.001-0.005 Hz) is related to macro sleep disruptions. Spectral band BW2 (0.028-0.074 Hz) is related to the duration of apneic events. An adaptive spectral band within the respiratory range, termed ABW3, is related to oxygen desaturations. The individual and collective diagnostic ability of these novel spectral bands outperforms classic HRV bands.
Assuntos
Frequência Cardíaca , Síndromes da Apneia do Sono/fisiopatologia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , MasculinoRESUMO
The most appropriate physiological signals to develop simplified as well as accurate screening tests for obstructive sleep apnoea (OSA) remain unknown. This study aimed at assessing whether joint analysis of at-home oximetry and airflow recordings by means of machine-learning algorithms leads to a significant diagnostic performance increase compared to single-channel approaches. Consecutive patients showing moderate-to-high clinical suspicion of OSA were involved. The apnoea-hypopnoea index (AHI) from unsupervised polysomnography was the gold standard. Oximetry and airflow from at-home polysomnography were parameterised by means of 38 time, frequency, and non-linear variables. Complementarity between both signals was exhaustively inspected via automated feature selection. Regression support vector machines were used to estimate the AHI from single-channel and dual-channel approaches. A total of 239 patients successfully completed at-home polysomnography. The optimum joint model reached 0.93 (95%CI 0.90-0.95) intra-class correlation coefficient between estimated and actual AHI. Overall performance of the dual-channel approach (kappa: 0.71; 4-class accuracy: 81.3%) significantly outperformed individual oximetry (kappa: 0.61; 4-class accuracy: 75.0%) and airflow (kappa: 0.42; 4-class accuracy: 61.5%). According to our findings, oximetry alone was able to reach notably high accuracy, particularly to confirm severe cases of the disease. Nevertheless, oximetry and airflow showed high complementarity leading to a remarkable performance increase compared to single-channel approaches. Consequently, their joint analysis via machine learning enables accurate abbreviated screening of OSA at home.
Assuntos
Monitorização Ambulatorial/métodos , Ventilação Pulmonar/fisiologia , Síndromes da Apneia do Sono/diagnóstico , Adulto , Idoso , Algoritmos , Feminino , Humanos , Aprendizado de Máquina , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Oximetria/métodos , Polissonografia/métodos , Reprodutibilidade dos Testes , Fenômenos Fisiológicos Respiratórios , Síndromes da Apneia do Sono/fisiopatologia , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/fisiopatologia , Espanha/epidemiologiaRESUMO
BACKGROUND: The coexistence of obstructive sleep apnea syndrome (OSAS) and chronic obstructive pulmonary disease (COPD) leads to increased morbidity and mortality. The development of home-based screening tests is essential to expedite diagnosis. Nevertheless, there is still very limited evidence on the effectiveness of portable monitoring to diagnose OSAS in patients with pulmonary comorbidities. OBJECTIVE: To assess the influence of suffering from COPD in the performance of an oximetry-based screening test for moderate-to-severe OSAS, both in the hospital and at home. METHODS: A total of 407 patients showing moderate-to-high clinical suspicion of OSAS were involved in the study. All subjects underwent (i) supervised portable oximetry simultaneously to in-hospital polysomnography (PSG) and (ii) unsupervised portable oximetry at home. A regression-based multilayer perceptron (MLP) artificial neural network (ANN) was trained to estimate the apnea-hypopnea index (AHI) from portable oximetry recordings. Two independent validation datasets were analyzed: COPD versus non-COPD. RESULTS: The portable oximetry-based MLP ANN reached similar intra-class correlation coefficient (ICC) values between the estimated AHI and the actual AHI for the non-COPD and the COPD groups either in the hospital (non-COPD: 0.937, 0.909-0.956 CI95%; COPD: 0.936, 0.899-0.960 CI95%) and at home (non-COPD: 0.731, 0.631-0.808 CI95%; COPD: 0.788, 0.678-0.864 CI95%). Regarding the area under the receiver operating characteristics curve (AUC), no statistically significant differences (p >0.01) between COPD and non-COPD groups were found in both settings, particularly for severe OSAS (AHI ≥30 events/h): 0.97 (0.92-0.99 CI95%) non-COPD vs. 0.98 (0.92-1.0 CI95%) COPD in the hospital, and 0.87 (0.79-0.92 CI95%) non-COPD vs. 0.86 (0.75-0.93 CI95%) COPD at home. CONCLUSION: The agreement and the diagnostic performance of the estimated AHI from automated analysis of portable oximetry were similar regardless of the presence of COPD both in-lab and at-home. Particularly, portable oximetry could be used as an abbreviated screening test for moderate-to-severe OSAS in patients with COPD.
Assuntos
Programas de Rastreamento , Oximetria/métodos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Síndromes da Apneia do Sono/complicações , Síndromes da Apneia do Sono/diagnóstico , Automação , Bases de Dados como Assunto , Demografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Redes Neurais de Computação , Polissonografia , Curva ROCRESUMO
RATIONALE: The vast majority of children around the world undergoing adenotonsillectomy for obstructive sleep apnea-hypopnea syndrome (OSA) are not objectively diagnosed by nocturnal polysomnography because of access availability and cost issues. Automated analysis of nocturnal oximetry (nSpO2), which is readily and globally available, could potentially provide a reliable and convenient diagnostic approach for pediatric OSA. METHODS: Deidentified nSpO2 recordings from a total of 4,191 children originating from 13 pediatric sleep laboratories around the world were prospectively evaluated after developing and validating an automated neural network algorithm using an initial set of single-channel nSpO2 recordings from 589 patients referred for suspected OSA. MEASUREMENTS AND MAIN RESULTS: The automatically estimated apnea-hypopnea index (AHI) showed high agreement with AHI from conventional polysomnography (intraclass correlation coefficient, 0.785) when tested in 3,602 additional subjects. Further assessment on the widely used AHI cutoff points of 1, 5, and 10 events/h revealed an incremental diagnostic ability (75.2, 81.7, and 90.2% accuracy; 0.788, 0.854, and 0.913 area under the receiver operating characteristic curve, respectively). CONCLUSIONS: Neural network-based automated analyses of nSpO2 recordings provide accurate identification of OSA severity among habitually snoring children with a high pretest probability of OSA. Thus, nocturnal oximetry may enable a simple and effective diagnostic alternative to nocturnal polysomnography, leading to more timely interventions and potentially improved outcomes.