Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 2038, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739295

RESUMO

Complement proteins are deposited in the muscles of patients with myositis. However, the local expression and regulation of complement genes within myositis muscle have not been well characterized. In this study, bulk RNA sequencing (RNAseq) analyses of muscle biopsy specimens revealed that complement genes are locally overexpressed and correlate with markers of myositis disease activity, including the expression of interferon-gamma (IFNγ)-induced genes. Single cell and single nuclei RNAseq analyses showed that most local expression of complement genes occurs in macrophages, fibroblasts, and satellite cells, with each cell type expressing different sets of complement genes. Biopsies from immune-mediated necrotizing myopathy patients, who have the lowest levels of IFNγ-induced genes, also had the lowest complement gene expression levels. Furthermore, data from cultured human cells showed that IFNγ upregulates complement expression in macrophages, fibroblasts, and muscle cells. Taken together, our results suggest that in myositis muscle, IFNγ coordinates the local overexpression of complement genes that occurs in several cell types.


Assuntos
Interferon gama , Miosite , Humanos , Proteínas do Sistema Complemento/metabolismo , Interferon gama/metabolismo , Músculo Esquelético/metabolismo , Músculos/metabolismo , Miosite/metabolismo , RNA/metabolismo
2.
Ann Rheum Dis ; 82(6): 829-836, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36801811

RESUMO

OBJECTIVES: Inflammatory myopathy or myositis is a heterogeneous family of immune-mediated diseases including dermatomyositis (DM), antisynthetase syndrome (AS), immune-mediated necrotising myopathy (IMNM) and inclusion body myositis (IBM). Immune checkpoint inhibitors (ICIs) can also cause myositis (ICI-myositis). This study was designed to define gene expression patterns in muscle biopsies from patients with ICI-myositis. METHODS: Bulk RNA sequencing was performed on 200 muscle biopsies (35 ICI-myositis, 44 DM, 18 AS, 54 IMNM, 16 IBM and 33 normal muscle biopsies) and single nuclei RNA sequencing was performed on 22 muscle biopsies (seven ICI-myositis, four DM, three AS, six IMNM and two IBM). RESULTS: Unsupervised clustering defined three distinct transcriptomic subsets of ICI-myositis: ICI-DM, ICI-MYO1 and ICI-MYO2. ICI-DM included patients with DM and anti-TIF1γ autoantibodies who, like DM patients, overexpressed type 1 interferon-inducible genes. ICI-MYO1 patients had highly inflammatory muscle biopsies and included all patients that developed coexisting myocarditis. ICI-MYO2 was composed of patients with predominant necrotising pathology and low levels of muscle inflammation. The type 2 interferon pathway was activated both in ICI-DM and ICI-MYO1. Unlike the other types of myositis, all three subsets of ICI-myositis patients overexpressed genes involved in the IL6 pathway. CONCLUSIONS: We identified three distinct types of ICI-myositis based on transcriptomic analyses. The IL6 pathway was overexpressed in all groups, the type I interferon pathway activation was specific for ICI-DM, the type 2 IFN pathway was overexpressed in both ICI-DM and ICI-MYO1 and only ICI-MYO1 patients developed myocarditis.


Assuntos
Doenças Autoimunes , Dermatomiosite , Miocardite , Miosite de Corpos de Inclusão , Miosite , Humanos , Inibidores de Checkpoint Imunológico , Dermatomiosite/genética , Transcriptoma , Miocardite/patologia , Interleucina-6/metabolismo , Miosite/induzido quimicamente , Miosite/genética , Doenças Autoimunes/complicações , Interferons/genética , Músculo Esquelético/patologia
3.
Ann Rheum Dis ; 77(4): 612-619, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29358286

RESUMO

OBJECTIVES: To characterise the clinical features, immune manifestations and molecular mechanisms in a recently described autoinflammatory disease caused by mutations in TRNT1, a tRNA processing enzyme, and to explore the use of cytokine inhibitors in suppressing the inflammatory phenotype. METHODS: We studied nine patients with biallelic mutations in TRNT1 and the syndrome of congenital sideroblastic anaemia with immunodeficiency, fevers and developmental delay (SIFD). Genetic studies included whole exome sequencing (WES) and candidate gene screening. Patients' primary cells were used for deep RNA and tRNA sequencing, cytokine profiling, immunophenotyping, immunoblotting and electron microscopy (EM). RESULTS: We identified eight mutations in these nine patients, three of which have not been previously associated with SIFD. Three patients died in early childhood. Inflammatory cytokines, mainly interleukin (IL)-6, interferon gamma (IFN-γ) and IFN-induced cytokines were elevated in the serum, whereas tumour necrosis factor (TNF) and IL-1ß were present in tissue biopsies of patients with active inflammatory disease. Deep tRNA sequencing of patients' fibroblasts showed significant deficiency of mature cytosolic tRNAs. EM of bone marrow and skin biopsy samples revealed striking abnormalities across all cell types and a mix of necrotic and normal-appearing cells. By immunoprecipitation, we found evidence for dysregulation in protein clearance pathways. In 4/4 patients, treatment with a TNF inhibitor suppressed inflammation, reduced the need for blood transfusions and improved growth. CONCLUSIONS: Mutations of TRNT1 lead to a severe and often fatal syndrome, linking protein homeostasis and autoinflammation. Molecular diagnosis in early life will be crucial for initiating anti-TNF therapy, which might prevent some of the severe disease consequences.


Assuntos
Anemia Sideroblástica/genética , Anti-Inflamatórios/uso terapêutico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Síndromes de Imunodeficiência/genética , Mutação , Nucleotidiltransferases/genética , RNA de Transferência/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Anemia Sideroblástica/sangue , Criança , Pré-Escolar , Citocinas/sangue , Citocinas/genética , Deficiências do Desenvolvimento/genética , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Humanos , Imunofenotipagem , Masculino , Linhagem , Fenótipo , Fator de Necrose Tumoral alfa/análise , Sequenciamento do Exoma
4.
Cell Rep ; 14(5): 1156-1168, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26832413

RESUMO

Histone variants complement and integrate histone post-translational modifications in regulating transcription. The histone variant macroH2A1 (mH2A1) is almost three times the size of its canonical H2A counterpart, due to the presence of an ∼25 kDa evolutionarily conserved non-histone macro domain. Strikingly, mH2A1 can mediate both gene repression and activation. However, the molecular determinants conferring these alternative functions remain elusive. Here, we report that mH2A1.2 is required for the activation of the myogenic gene regulatory network and muscle cell differentiation. H3K27 acetylation at prospective enhancers is exquisitely sensitive to mH2A1.2, indicating a role of mH2A1.2 in imparting enhancer activation. Both H3K27 acetylation and recruitment of the transcription factor Pbx1 at prospective enhancers are regulated by mH2A1.2. Overall, our findings indicate a role of mH2A1.2 in marking regulatory regions for activation.


Assuntos
Elementos Facilitadores Genéticos/genética , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Diferenciação Celular/genética , Cromatina/metabolismo , Epigênese Genética , Redes Reguladoras de Genes , Genoma , Células HEK293 , Humanos , Camundongos , Células Musculares/citologia , Células Musculares/metabolismo , Desenvolvimento Muscular/genética , Proteína MyoD/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B , Ligação Proteica/genética , Transcrição Gênica , Transcriptoma/genética
5.
Cell ; 152(3): 620-32, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23352430

RESUMO

DNA double-strand breaks (DSBs) in B lymphocytes arise stochastically during replication or as a result of targeted DNA damage by activation-induced cytidine deaminase (AID). Here we identify recurrent, early replicating, and AID-independent DNA lesions, termed early replication fragile sites (ERFSs), by genome-wide localization of DNA repair proteins in B cells subjected to replication stress. ERFSs colocalize with highly expressed gene clusters and are enriched for repetitive elements and CpG dinucleotides. Although distinct from late-replicating common fragile sites (CFS), the stability of ERFSs and CFSs is similarly dependent on the replication-stress response kinase ATR. ERFSs break spontaneously during replication, but their fragility is increased by hydroxyurea, ATR inhibition, or deregulated c-Myc expression. Moreover, greater than 50% of recurrent amplifications/deletions in human diffuse large B cell lymphoma map to ERFSs. In summary, we have identified a source of spontaneous DNA lesions that drives instability at preferred genomic sites.


Assuntos
Sítios Frágeis do Cromossomo , Replicação do DNA , Eucariotos/genética , Instabilidade Genômica , Células Procarióticas/fisiologia , Animais , Fenômenos Biomecânicos , Reparo do DNA , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA