Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(20): 14425-14437, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38694549

RESUMO

Stimuli-responsive membranes play an important role in the fields of biomedicine, food and chemical industries, and environmental applications, including separation of water-oil emulsions. In this study, we present a method to fabricate pH-sensitive membranes using UV-initiated RAFT graft copolymerization of styrene (ST) and acrylic acid (AA) on poly(ethylene terephthalate) (PET) track-etched membranes (TeMs). The optimization of polymerization conditions led to successful grafting of polystyrene (PS) and poly(acrylic acid) (PAA) onto PET TeMs, resulting in membranes with stable hydrophobicity and pH change responsiveness. The membranes show a contact angle of 65° in basic environments (pH 9) and 97° in acidic environments (pH 2). The membranes were characterized by atomic force microscopy (AFM), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), thermogravimetric analyses (TGA), Fourier transform infrared spectroscopy (FTIR), contact angle (CA) methods. The PET TeMs-g-PS-g-PAA exhibited good performance in separating water-oil emulsions with a high efficiency of more than 90% and flux for direct chloroform-water 2500 L m-2 h-1 and reverse emulsions of benzene-water 1700 L m-2 h-1. This method of preparing stimuli-responsive membranes with controlled wettability and responsiveness to environmental pH provides versatility in their use in separating two types of emulsions: direct and reverse.

2.
Membranes (Basel) ; 13(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37233585

RESUMO

In this work, we have developed a method for the preparation of pH-responsive track-etched membranes (TeMs) based on poly(ethylene terephthalate) (PET) with pore diameters of 2.0 ± 0.1 µm of cylindrical shape by RAFT block copolymerization of styrene (ST) and 4-vinylpyridine (4-VP) to be used in the separation of water-oil emulsions. The influence of the monomer concentration (1-4 vol%), the molar ratio of RAFT agent: initiator (1:2-1:100) and the grafting time (30-120 min) on the contact angle (CA) was studied. The optimal conditions for ST and 4-VP grafting were found. The obtained membranes showed pH-responsive properties: at pH 7-9, the membrane was hydrophobic with a CA of 95°; at pH 2, the CA decreased to 52°, which was due to the protonated grafted layer of poly-4-vinylpyridine (P4VP), which had an isoelectric point of pI = 3.2. The obtained membranes with controlled hydrophobic-hydrophilic properties were tested by separating the direct and reverse "oil-water" emulsions. The stability of the hydrophobic membrane was studied for 8 cycles. The degree of purification was in the range of 95-100%.

3.
Eur J Pharm Biopharm ; 184: 189-201, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36764499

RESUMO

We prepared a novel nanogel consisting of poly(acrylic acid) (PAA) and pullulan (Pull) via a facile and green irradiation protocol. Synthesized nanogels were modified with bovine serum albumin (BSA) and folic acid (FA) and then loaded with doxorubicin (DOX) to obtain a delivery system with tumor-specific targeting ability and enhanced biocompatibility. In-vitro DOX release was investigated at different pH values, and it was found that DOX release was higher in acidic media, which is an advantage for the internalization of nanoparticles in acidic tumor environment. MTT assay and DAPI staining were performed to evaluate the effects of nanogels on L929 and MCF-7 cells. Based on the results of in vitro studies, DOX-loaded nanogels were found to be effective on cancer cells, while the neat ones were nondestructive in both lines. Overall, we envision that the biocompatible and tumor-specific nanogels could be a promising safe drug carrier system for cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Nanogéis , Células MCF-7 , Ácido Fólico , Doxorrubicina , Portadores de Fármacos , Concentração de Íons de Hidrogênio , Sistemas de Liberação de Medicamentos
4.
Polymers (Basel) ; 14(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893980

RESUMO

In this article, results of PET track-etched membranes (PET TeMs) hydrophobized by photo-induced graft polymerization of stearyl methacrylate (SM) inside the pores were presented. The effects of monomer concentration, time of irradiation and the nature of the solvent on the degree of grafting and membrane morphology were investigated. The PET TeMs with pore diameters ranging from 350 nm (pore density of 1 × 108 pore/cm2) to 3.05 µm (pore density of 1 × 106 pore/cm2) were hydrophobized and tested for oil-water separation by using hexadecane-water and chloroform-water emulsions. Studies have shown high separation performance for membranes (up to 1100 mL/m2·s) with large pore diameters while achieving a high degree of purification.

5.
Appl Radiat Isot ; 145: 161-169, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30639632

RESUMO

Controlling of sizes of nanogels is very important for any biomedical application. In the present study we report a facile and reproducible method of preparing biocompatible nanogels of poly(N-vinyl pyrrolidone) (PVP) which were synthesized by using either electron beam (e-beam) (NGEB) or gamma irradiation (NGG) of dilute aqueous solutions. Nanogels with different hydrodynamic sizes were obtained at the variance of the polymer molecular weight, concentration, type of radiation source hence dose rate and total absorbed dose. For the first time a comparative study of gamma and e-beam irradiation was made on the same polymer with the aim of controlling sizes of nanogels in the range of 30-250 nm. Moreover the stability of radiation-synthesized nanogels was followed up to 2 years in refrigerated solution and found to retain their original sizes and distributions enabling their long-term storage and use. The synthesized nanogels were characterized by using dynamic light scattering (DLS), gel permeation chromatography (GPC), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. This work provides a clue to the fundamental question of how to control sizes of nanogels without using any additives which are indispensable with the other techniques. The technique is applicable to any water soluble polymer.

6.
J Mol Recognit ; 31(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28983989

RESUMO

This study presents the preparation of molecularly imprinted matrices by using radiation-induced grafting technique onto polyethylene/polypropylene (PE/PP) non-woven fabrics. Atrazine imprinted polymers were grafted onto PE/PP non-woven fabrics through the use of methacrylic acid (MAA) and ethylene glycol dimethylacrylate (EGDMA) as the functional monomer and crosslinking agent, respectively. Grafted MIPs were characterized by attenuated total reflectance Fourier transform infra-red spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), elemental analysis, scanning electron microscopy (SEM), and positron annihilation lifetime spectroscopy (PALS). The average diameter of free volume holes was determined as 0.612 nm which correlates very well with the size of template molecule atrazine, 0.512 nm. Binding behaviors were investigated against various factors, such as concentration of template molecule, pH, and contact time. Furthermore, the specific selectivity of grafted MIP on non-woven fabric was studied by using other common triazine compounds, such as simazine and metribuzine which show structural similarities to atrazine. The specific binding values for atrazine, simazine, and metribuzine were determined as 40%, 2.5%, and 1.5%, respectively.


Assuntos
Atrazina/química , Polietilenos/química , Polipropilenos/química , Têxteis , Adsorção , Concentração de Íons de Hidrogênio , Metacrilatos/química , Impressão Molecular , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier
7.
Carbohydr Polym ; 114: 546-552, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25263925

RESUMO

Better understanding of the chemistry of radiation-induced degradation is becoming of increasing importance on account of the utilization of polymeric materials in a variety of radiation environments as well as beneficial uses of degraded polymers. In this report the importance of environmental humidity on the degrading effect of radiation has been considered from the point of view of controlling the molecular weights of kappa- and iota-carrageenans. These two polysaccharides were irradiated in solid form under strictly controlled environmental humidity conditions by incubating and later irradiating the samples over saturated aqueous salt solutions of NaCl, NaNO3 and MgCl2. The degradation was followed in detail by a careful gel permeation chromatographic analysis of their respective molecular weights before and after irradiation. The chain scission yield values G(S) were found to decrease with the water adsorbed from environment at every absorbed dose in the range of 5-100 kGy. On the other hand at very high water uptakes the yield of chain scission again increases especially at low doses. The decrease in degradation yield was attributed to the plastifying effect of water trapped in between the polymer chains facilitating the macroradical recombinations thus reducing the extent of chain scission. This study showed that although carrageenans were irradiated in solid form, the difference in their water uptake from changing environmental humidity has a profound effect in controlling their molecular weights by irradiation with ionizing radiation.


Assuntos
Carragenina/química , Cromatografia em Gel , Relação Dose-Resposta à Radiação , Umidade
8.
J Pharm Sci ; 102(10): 3748-61, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23918313

RESUMO

The aims of this study were to develop and characterize paclitaxel nanoparticles, to identify and control critical sources of variability in the process, and to understand the impact of formulation and process parameters on the critical quality attributes (CQAs) using a quality-by-design (QbD) approach. For this, a risk assessment study was performed with various formulation and process parameters to determine their impact on CQAs of nanoparticles, which were determined to be average particle size, zeta potential, and encapsulation efficiency. Potential risk factors were identified using an Ishikawa diagram and screened by Plackett-Burman design and finally nanoparticles were optimized using Box-Behnken design. The optimized formulation was further characterized by Fourier transform infrared spectroscopy, X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy, atomic force microscopy, and gas chromatography. It was observed that paclitaxel transformed from crystalline state to amorphous state while totally encapsulating into the nanoparticles. The nanoparticles were spherical, smooth, and homogenous with no dichloromethane residue. In vitro cytotoxicity test showed that the developed nanoparticles are more efficient than free paclitaxel in terms of antitumor activity (more than 25%). In conclusion, this study demonstrated that understanding formulation and process parameters with the philosophy of QbD is useful for the optimization of complex drug delivery systems.


Assuntos
Nanopartículas/química , Paclitaxel/química , Antineoplásicos/química , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Tamanho da Partícula
9.
ACS Comb Sci ; 13(6): 646-52, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21888414

RESUMO

Here we present a new and versatile method for the modification of the well surfaces of polystyrene microtiter plates (microplates) with poly(N-phenylethylene diamine methacrylamide), (poly-NPEDMA). The chemical grafting of poly-NPEDMA to the surface of microplates resulted in the formation of thin layers of a polyaniline derivative bearing pendant methacrylamide double bonds. These were used as the attachment point for various functional polymers through photochemical grafting of various, for example, acrylate and methacrylate, polymers with different functionalities. In a model experiment, we have modified poly-NPEDMA-coated microplates with a small library of polymers containing different functional groups using a two-step approach. In the first step, double bonds were activated by UV irradiation in the presence of N,N-diethyldithiocarbamic acid benzyl ester (iniferter). This enabled grafting of the polymer library in the second step by UV irradiation of solutions of the corresponding monomers in the microplate wells. The uniformity of coatings was confirmed spectrophotometrically, by microscopic imaging and by contact angle measurements (CA). The feasibility of the current technology has been shown by the generation of a small library of polymers grafted to the microplate well surfaces and screening of their affinity to small molecules, such as atrazine, a trio of organic dyes, and a model protein, bovine serum albumin (BSA). The stability of the polymers, reproducibility of measurement, ease of preparation, and cost-effectiveness make this approach suitable for applications in high-throughput screening in the area of materials research.


Assuntos
Materiais Biocompatíveis/análise , Materiais Biocompatíveis/química , Nanoestruturas/análise , Polímeros/análise , Polímeros/química , Acrilamidas/química , Materiais Biocompatíveis/síntese química , Diaminas/química , Nanoestruturas/química , Fotoquímica , Polímeros/síntese química , Poliestirenos/química , Análise Espectral , Propriedades de Superfície , Raios Ultravioleta
10.
Int J Pharm ; 301(1-2): 102-11, 2005 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16019170

RESUMO

The aim of this study was to investigate the equilibrium swelling properties in urea solutions of gamma-radiation induced polyelectrolyte copolymeric hydrogels consisting of acrylamide (AAm) and crotonic acid (CA). Poly(acrylamide-co-crotonic acid), poly(AAm-co-CA) hydrogels containing different amounts of CA were obtained in the form of rods after radiation. Swelling experiments were performed in aqueous urea solutions at 25 degrees C, gravimetrically. The hydrogels showed large extents of swelling in aqueous (urea/water) media the swelling being highly dependent on the chemical composition of the hydrogels and irradiation dose. The percentage swelling of poly(AAm-co-CA) hydrogels was between 1160 and 4250%, while that of the AAm hydrogels was between 670 and 900%. The diffusional exponent values (n) are between 0.51 and 0.66, hence the diffusion of urea/water into the hydrogels is non-Fickian. Equilibrium urea/water contents of the hydrogel systems were changed between 0.870 and 0.977.


Assuntos
Acrilamidas/química , Crotonatos/química , Raios gama , Hidrogéis/química , Hidrogéis/efeitos da radiação , Ureia/química , Acrilamidas/efeitos da radiação , Adsorção , Reagentes de Ligações Cruzadas , Crotonatos/efeitos da radiação , Difusão , Cinética , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA