Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8587, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615147

RESUMO

Helicobacter pylori infects approximately half the human population and has an unusual infective niche of the human stomach. Helicobacter pylori is a major cause of gastritis and has been classified as a group 1 carcinogen by the WHO. Treatment involves triple or quadruple antibiotic therapy, but antibiotic resistance is becoming increasingly prevalent. Helicobacter pylori expresses certain blood group related antigens (Lewis system) as a part of its lipopolysaccharide (LPS), which is thought to assist in immune evasion. Additionally, H. pylori LPS participates in adhesion to host cells alongside several adhesion proteins. This study profiled the carbohydrates of H. pylori reference strains (SS1 and 26695) using monoclonal antibodies (mAbs) and lectins, identifying interactions between two carbohydrate-targeting mAbs and multiple lectins. Atomic force microscopy (AFM) scans were used to probe lectin and antibody interactions with the bacterial surfaces. The selected mAb and lectins displayed an increased adhesive force over the surface of the curved H. pylori rods. Furthermore, this study demonstrates the ability of anti-carbohydrate antibodies to reduce the adhesion of H. pylori 26695 to human gastric adenocarcinoma cells via AFM. Targeting bacterial carbohydrates to disrupt crucial adhesion and immune evasion mechanisms represents a promising strategy for combating H. pylori infection.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Helicobacter , Helicobacter pylori , Humanos , Lipopolissacarídeos , Polissacarídeos , Anticorpos Monoclonais , Lectinas
2.
PLoS One ; 17(10): e0276287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36240154

RESUMO

The blood fluke Cardicola forsteri (Trematoda: Aporocotylidae) is a pathogen of ranched bluefin tuna in Japan and Australia. Genomics of Cardicola spp. have thus far been limited to molecular phylogenetics of select gene sequences. In this study, sequencing of the C. forsteri genome was performed using Illumina short-read and Oxford Nanopore long-read technologies. The sequences were assembled de novo using a hybrid of short and long reads, which produced a high-quality contig-level assembly (N50 > 430 kb and L50 = 138). The assembly was also relatively complete and unfragmented, comprising 66% and 7.2% complete and fragmented metazoan Benchmarking Universal Single-Copy Orthologs (BUSCOs), respectively. A large portion (> 55%) of the genome was made up of intergenic repetitive elements, primarily long interspersed nuclear elements (LINEs), while protein-coding regions cover > 6%. Gene prediction identified 8,564 hypothetical polypeptides, > 77% of which are homologous to published sequences of other species. The identification of select putative proteins, including cathepsins, calpains, tetraspanins, and glycosyltransferases is discussed. This is the first genome assembly of any aporocotylid, a major step toward understanding of the biology of this family of fish blood flukes and their interactions within hosts.


Assuntos
Doenças dos Peixes , Schistosomatidae , Animais , Catepsinas , Glicosiltransferases , Schistosoma , Atum/genética
3.
Front Immunol ; 13: 868225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634347

RESUMO

Helicobacter pylori is an important human pathogen that infects half the human population and can lead to significant clinical outcomes such as acute and chronic gastritis, duodenal ulcer, and gastric adenocarcinoma. To establish infection, H. pylori employs several mechanisms to overcome the innate and adaptive immune systems. H. pylori can modulate interleukin (IL) secretion and innate immune cell function by the action of several virulence factors such as VacA, CagA and the type IV secretion system. Additionally, H. pylori can modulate local dendritic cells (DC) negatively impacting the function of these cells, reducing the secretion of immune signaling molecules, and influencing the differentiation of CD4+ T helper cells causing a bias to Th1 type cells. Furthermore, the lipopolysaccharide (LPS) of H. pylori displays a high degree of phase variation and contains human blood group carbohydrate determinants such as the Lewis system antigens, which are proposed to be involved in molecular mimicry of the host. Lastly, the H. pylori group of outer membrane proteins such as BabA play an important role in attachment and interaction with host Lewis and other carbohydrate antigens. This review examines the various mechanisms that H. pylori utilises to evade the innate immune system as well as discussing how the structure of the H. pylori LPS plays a role in immune evasion.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Evasão da Resposta Imune , Lipopolissacarídeos , Fatores de Virulência/metabolismo
4.
Biochem J ; 477(17): 3219-3235, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32789497

RESUMO

Immunotherapy has been successful in treating many tumour types. The development of additional tumour-antigen binding monoclonal antibodies (mAbs) will help expand the range of immunotherapeutic targets. Lewis histo-blood group and related glycans are overexpressed on many carcinomas, including those of the colon, lung, breast, prostate and ovary, and can therefore be selectively targeted by mAbs. Here we examine the molecular and structural basis for recognition of extended Lea and Lex containing glycans by a chimeric mAb. Both the murine (FG88.2) IgG3 and a chimeric (ch88.2) IgG1 mAb variants showed reactivity to colorectal cancer cells leading to significantly reduced cell viability. We determined the X-ray structure of the unliganded ch88.2 fragment antigen-binding (Fab) containing two Fabs in the unit cell. A combination of molecular docking, glycan grafting and molecular dynamics simulations predicts two distinct subsites for recognition of Lea and Lex trisaccharides. While light chain residues were exclusively used for Lea binding, recognition of Lex involved both light and heavy chain residues. An extended groove is predicted to accommodate the Lea-Lex hexasaccharide with adjoining subsites for each trisaccharide. The molecular and structural details of the ch88.2 mAb presented here provide insight into its cross-reactivity for various Lea and Lex containing glycans. Furthermore, the predicted interactions with extended epitopes likely explains the selectivity of this antibody for targeting Lewis-positive tumours.


Assuntos
Anticorpos Monoclonais Murinos , Antineoplásicos Imunológicos , Fragmentos Fab das Imunoglobulinas , Antígenos do Grupo Sanguíneo de Lewis , Antígenos CD15 , Simulação de Acoplamento Molecular , Neoplasias , Oligossacarídeos , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/imunologia , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/imunologia , Linhagem Celular Tumoral , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Antígenos do Grupo Sanguíneo de Lewis/química , Antígenos do Grupo Sanguíneo de Lewis/imunologia , Antígenos CD15/química , Antígenos CD15/imunologia , Camundongos , Neoplasias/química , Neoplasias/imunologia , Oligossacarídeos/química , Oligossacarídeos/imunologia
5.
J Biol Chem ; 295(4): 1009-1020, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31831622

RESUMO

Cancer remains a leading cause of morbidity and mortality worldwide, requiring ongoing development of targeted therapeutics such as monoclonal antibodies. Carbohydrates on embryonic cells are often highly expressed in cancer and are therefore attractive targets for antibodies. Stage-specific embryonic antigen-4 (SSEA-4) is one such glycolipid target expressed in many cancers, including breast and ovarian carcinomas. Here, we defined the structural basis for recognition of SSEA-4 by a novel monospecific chimeric antibody (ch28/11). Five X-ray structures of ch28/11 Fab complexes with the SSEA-4 glycan headgroup, determined at 1.5-2.7 Å resolutions, displayed highly similar three-dimensional structures indicating a stable binding mode. The structures also revealed that by adopting a horseshoe-shaped conformation in a deep groove, the glycan headgroup likely sits flat against the membrane to allow the antibody to interact with SSEA-4 on cancer cells. Moreover, we found that the terminal sialic acid of SSEA-4 plays a dominant role in dictating the exquisite specificity of the ch28/11 antibody. This observation was further supported by molecular dynamics simulations of the ch28/11-glycan complex, which show that SSEA-4 is stabilized by its terminal sialic acid, unlike SSEA-3, which lacks this sialic acid modification. These high-resolution views of how a glycolipid interacts with an antibody may help to advance a new class of cancer-targeting immunotherapy.


Assuntos
Anticorpos Antineoplásicos/imunologia , Ácido N-Acetilneuramínico/metabolismo , Neoplasias/imunologia , Antígenos Embrionários Estágio-Específicos/metabolismo , Anticorpos Antineoplásicos/química , Especificidade de Anticorpos/imunologia , Configuração de Carboidratos , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Polissacarídeos/química , Polissacarídeos/metabolismo , Antígenos Embrionários Estágio-Específicos/química
6.
PLoS One ; 10(10): e0141729, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26513658

RESUMO

Malaria remains a significant global health burden. The development of an effective malaria vaccine remains as a major challenge with the potential to significantly reduce morbidity and mortality. While Plasmodium spp. have been shown to contain a large number of intrinsically disordered proteins (IDPs) or disordered protein regions, the relationship of protein structure to subcellular localisation and adaptive immune responses remains unclear. In this study, we employed several computational prediction algorithms to identify IDPs at the proteome level of six Plasmodium spp. and to investigate the potential impact of protein disorder on adaptive immunity against P. falciparum parasites. IDPs were shown to be particularly enriched within nuclear proteins, apical proteins, exported proteins and proteins localised to the parasitophorous vacuole. Furthermore, several leading vaccine candidates, and proteins with known roles in host-cell invasion, have extensive regions of disorder. Presentation of peptides by MHC molecules plays an important role in adaptive immune responses, and we show that IDP regions are predicted to contain relatively few MHC class I and II binding peptides owing to inherent differences in amino acid composition compared to structured domains. In contrast, linear B-cell epitopes were predicted to be enriched in IDPs. Tandem repeat regions and non-synonymous single nucleotide polymorphisms were found to be strongly associated with regions of disorder. In summary, immune responses against IDPs appear to have characteristics distinct from those against structured protein domains, with increased antibody recognition of linear epitopes but some constraints for MHC presentation and issues of polymorphisms. These findings have major implications for vaccine design, and understanding immunity to malaria.


Assuntos
Proteínas Intrinsicamente Desordenadas/imunologia , Plasmodium/imunologia , Proteoma , Proteômica , Proteínas de Protozoários/imunologia , Sequência de Aminoácidos , Aminoácidos , Biologia Computacional/métodos , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Peptídeos/química , Peptídeos/imunologia , Plasmodium falciparum/imunologia , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Sequências de Repetição em Tandem
7.
Ann Vasc Surg ; 23(2): 259-63, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18692989

RESUMO

We present our experience with a technique of endarterectomy for use in patients with iliofemoral occlusive disease, in which the atheromatous plug is extruded from the intact artery by external manipulation (pulsion). A retrospective review of consecutive patients who underwent surgical iliofemoral pulsion endarterectomy (IFPE) in two vascular surgery units between 1998 and 2006 was performed. Primary and secondary graft patency, limb salvage, and patient survival rates were determined using Kaplan-Meier methods. Fifty-eight IFPEs were carried out successfully on 54 patients (36 men, 18 women, median age 66 years) presenting with critical limb ischemia (n=23), with claudication (n=29), or in conjunction with abdominal aortic aneurysm repair (n=6). Mean (range) follow-up was 17 months (1-69). During this period six patients (all male, mean age 64 years) underwent iliofemoral bypass using a prosthetic graft when the iliac arteries were found unsuitable for endarterectomy because of hypoplasia or heavy calcification. Two-year cumulative primary patency of IFPE was 95%, secondary patency 100%, limb salvage 98.5%, and patient survival 73%. This modification of iliac endarterectomy is a relatively simple and safe technique that eschews prosthetics and offers a durable solution for the majority of patients with extensive iliofemoral occlusive disease.


Assuntos
Arteriopatias Oclusivas/cirurgia , Endarterectomia/métodos , Artéria Femoral/cirurgia , Artéria Ilíaca/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Aneurisma da Aorta Abdominal/complicações , Aneurisma da Aorta Abdominal/cirurgia , Arteriopatias Oclusivas/complicações , Arteriopatias Oclusivas/diagnóstico por imagem , Arteriopatias Oclusivas/mortalidade , Endarterectomia/efeitos adversos , Endarterectomia/mortalidade , Inglaterra , Feminino , Artéria Femoral/diagnóstico por imagem , Humanos , Artéria Ilíaca/diagnóstico por imagem , Claudicação Intermitente/etiologia , Claudicação Intermitente/cirurgia , Isquemia/etiologia , Isquemia/cirurgia , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Radiografia , Reoperação , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Grau de Desobstrução Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA