Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharmacokinet Pharmacodyn ; 49(3): 293-310, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35024995

RESUMO

Racemic praziquantel (PZQ) is the standard treatment for schistosomiasis and liver fluke infections (opisthorchiasis and clonorchiasis). The development of an optimal pediatric formulation and dose selection would benefit from a population pharmacokinetic (popPK) model. A popPK model was developed for R-PZQ, the active enantiomer of PZQ, in 664 subjects, 493 African children (2-15 years) infected with Schistosoma mansoni and S. haematobium, and 171 Lao adults (15-78 years) infected with Opisthorchis viverrini. Racemate tablets were administered as single doses of 20, 40 and 60 mg/kg in children and 30, 40 and 50 mg/kg in 129 adults, and as 3 × 25 mg/kg apart in 42 adults. Samples collected by the dried-blood-spot technique were assayed by LC-MS/MS. A two-compartment disposition model, with allometric scaling and dual first-order and transit absorption, was developed using Phoenix™ software. Inversely parallel functions of age described the apparent oral bioavailability (BA) and clearance maturation in children and ageing in adults. BA decreased slightly in children with dose increase, and by 35% in adults with multiple dosing. Crushing tablets for preschool-aged children increased the first-order absorption rate by 64%. The mean transit absorption time was 70% higher in children. A popPK model for R-PZQ integrated African children over 2 years of age with schistosomiasis and Lao adults with opisthorchiasis, and should be useful to support dose optimization in children. In vitro hepatic and intestinal metabolism data would help refining and validating the model in younger children as well as in target ethnic pediatric and adult groups.


Assuntos
Anti-Helmínticos , Opistorquíase , Opisthorchis , Esquistossomose , Adulto , Animais , Anti-Helmínticos/farmacocinética , Anti-Helmínticos/uso terapêutico , Criança , Pré-Escolar , Cromatografia Líquida , Humanos , Laos , Opistorquíase/tratamento farmacológico , Opisthorchis/metabolismo , Praziquantel/farmacocinética , Praziquantel/uso terapêutico , Schistosoma mansoni/metabolismo , Esquistossomose/tratamento farmacológico , Espectrometria de Massas em Tandem
2.
Front Pharmacol ; 7: 426, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27895581

RESUMO

Aim: The multidrug resistance protein 1 (MDR1; P-glycoprotein) has been associated with efflux of chemotherapeutic agents from tumor cells and with poor patient prognosis. This study evaluated the feasibility of non-invasive, non-radioactive near infrared (NIR) imaging methodology for detection of MDR1 functional activity in tumors. Methods: Initial accumulation assays were conducted in MDR1-overexpressing MDCK cells (MDCK-MDR1) and control MDCK cells (MDCK-CT) using the NIR dyes indocyanine green (ICG), IR-783, IR-775, rhodamine 800, XenoLight DiR, and Genhance 750, at 0.4 µM-100 µM. ICG and IR-783 were also evaluated in HT-29 cells in which MDR1 overexpression was induced by colchicine (HT-29-MDR1) and their controls (HT-29-CT). In vivo optical imaging studies were conducted using immunodeficient mice bearing HT-29-CT and HT-29-MDR1 xenografts. Results: ICG's emission intensity was 2.0- and 2.2-fold higher in control versus MDR1-overexpressing cells, in MDCK and HT-29 cell lines, respectively. The respective IR-783 control:MDR1 ratio was 1.4 in both MDCK and HT-29 cells. Optical imaging of mice bearing HT-29-CT and HT-29-MDR1 xenografts revealed a statistically non-significant, 1.7-fold difference (p > 0.05) in ICG emission intensity between control and MDR1 tumors. No such differences were observed with IR-783. Conclusion: ICG and IR-783 appear to be weak MDR1 substrates. In vivo, low sensitivity and high between-subject variability impair the ability to use the currently studied probes as markers of tumor MDR1 activity. The results suggest that, for future use of this technology, additional NIR probes should be screened as MDR1 substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA