Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Am Heart Assoc ; 13(10): e033998, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38726925

RESUMO

BACKGROUND: The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS: Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS: The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.


Assuntos
Angiotensina II , Encéfalo , Cálcio , Hipertensão , Rim , Microvasos , Óxido Nítrico , Vasoconstrição , Animais , Óxido Nítrico/metabolismo , Angiotensina II/farmacologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/tratamento farmacológico , Rim/irrigação sanguínea , Rim/metabolismo , Cálcio/metabolismo , Vasoconstrição/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/patologia , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Camundongos , Modelos Animais de Doenças , Masculino , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Sinalização do Cálcio/efeitos dos fármacos
2.
Am J Physiol Renal Physiol ; 320(3): F492-F504, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33491562

RESUMO

Although macula densa (MD) cells are chief regulatory cells in the nephron with unique microanatomical features, they have been difficult to study in full detail due to their inaccessibility and limitations in earlier microscopy techniques. The present study used a new mouse model with a comprehensive imaging approach to visualize so far unexplored microanatomical features of MD cells, their regulation, and functional relevance. MD-GFP mice with conditional and partial induction of green fluorescent protein (GFP) expression, which specifically and intensely illuminated only single MD cells, were used with fluorescence microscopy of fixed tissue and live MD cells in vitro and in vivo with complementary electron microscopy of the rat, rabbit, and human kidney. An elaborate network of major and minor cell processes, here named maculapodia, were found at the cell base, projecting toward other MD cells and the glomerular vascular pole. The extent of maculapodia showed upregulation by low dietary salt intake and the female sex. Time-lapse imaging of maculapodia revealed highly dynamic features including rapid outgrowth and an extensive vesicular transport system. Electron microscopy of rat, rabbit, and human kidneys and three-dimensional volume reconstruction in optically cleared whole-mount MD-GFP mouse kidneys further confirmed the presence and projections of maculapodia into the extraglomerular mesangium and afferent and efferent arterioles. The newly identified dynamic and secretory features of MD cells suggest the presence of novel functional and molecular pathways of cell-to-cell communication in the juxtaglomerular apparatus between MD cells and between MD and other target cells.NEW & NOTEWORTHY This study illuminated a physiologically regulated dense network of basal cell major and minor processes (maculapodia) in macula densa (MD) cells. The newly identified dynamic and secretory features of these microanatomical structures suggest the presence of novel functional and molecular pathways of cell-to-cell communication in the juxtaglomerular apparatus between MD and other target cells. Detailed characterization of the function and molecular details of MD cell intercellular communications and their role in physiology and disease warrant further studies.


Assuntos
Mesângio Glomerular/ultraestrutura , Sistema Justaglomerular/ultraestrutura , Glomérulos Renais/ultraestrutura , Túbulos Renais/ultraestrutura , Animais , Comunicação Celular/fisiologia , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Mesângio Glomerular/citologia , Glomérulos Renais/citologia , Túbulos Renais/citologia , Camundongos , Coelhos , Ratos
3.
J Am Soc Nephrol ; 31(7): 1555-1568, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32487560

RESUMO

BACKGROUND: The physiologic role of renomedullary interstitial cells, which are uniquely and abundantly found in the renal inner medulla, is largely unknown. Endothelin A receptors regulate multiple aspects of renomedullary interstitial cell function in vitro. METHODS: To assess the effect of targeting renomedullary interstitial cell endothelin A receptors in vivo, we generated a mouse knockout model with inducible disruption of renomedullary interstitial cell endothelin A receptors at 3 months of age. RESULTS: BP and renal function were similar between endothelin A receptor knockout and control mice during normal and reduced sodium or water intake. In contrast, on a high-salt diet, compared with control mice, the knockout mice had reduced BP; increased urinary sodium, potassium, water, and endothelin-1 excretion; increased urinary nitrite/nitrate excretion associated with increased noncollecting duct nitric oxide synthase-1 expression; increased PGE2 excretion associated with increased collecting duct cyclooxygenase-1 expression; and reduced inner medullary epithelial sodium channel expression. Water-loaded endothelin A receptor knockout mice, compared with control mice, had markedly enhanced urine volume and reduced urine osmolality associated with increased urinary endothelin-1 and PGE2 excretion, increased cyclooxygenase-2 protein expression, and decreased inner medullary aquaporin-2 protein content. No evidence of endothelin-1-induced renomedullary interstitial cell contraction was observed. CONCLUSIONS: Disruption of renomedullary interstitial cell endothelin A receptors reduces BP and increases salt and water excretion associated with enhanced production of intrinsic renal natriuretic and diuretic factors. These studies indicate that renomedullary interstitial cells can modulate BP and renal function under physiologic conditions.


Assuntos
Pressão Sanguínea , Medula Renal/fisiologia , Receptor de Endotelina A/fisiologia , Aldosterona/sangue , Animais , Arginina Vasopressina/urina , Cálcio/metabolismo , Diurese/efeitos dos fármacos , Endotelina-1/farmacologia , Endotelina-1/urina , Canais Epiteliais de Sódio/metabolismo , Feminino , Genótipo , Taxa de Filtração Glomerular , Ácido Hialurônico/metabolismo , Medula Renal/citologia , Medula Renal/metabolismo , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Natriurese/efeitos dos fármacos , Nitratos/urina , Nitritos/urina , Potássio/urina , RNA Mensageiro/metabolismo , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Sódio/urina , Cloreto de Sódio na Dieta/administração & dosagem , Tamoxifeno/farmacologia , Água/administração & dosagem , Água/metabolismo
4.
Methods Cell Biol ; 154: 85-107, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31493823

RESUMO

Fluorescence microscopy techniques are powerful tools to study tissue dynamics, cellular function and biology both in vivo and in vitro. These tools allow for functional assessment and quantification along with qualitative analysis, thus providing a comprehensive understanding of various cellular processes under normal physiological and disease conditions. The main focus of this chapter is the recently developed method of serial intravital multiphoton microscopy that has helped shed light on the dynamic alterations of the spatial distribution and fate of single renal cells or cell populations and their migration patterns in the same tissue region over several days in response to various stimuli within the living kidney. This technique is very useful for studying in vivo the molecular and cellular mechanisms of tissue remodeling and repair after injury. In addition, complementary in vitro imaging tools are also described and discussed, like tissue clearing techniques and protein synthesis measurement in tissues in situ that provide an in depth assessment of changes at the cellular level. Thus, these novel fluorescence techniques can be effectively leveraged for different tissue types, experimental conditions as well as disease models to improve our understanding of renal cell biology.


Assuntos
Células Epiteliais/ultraestrutura , Microscopia Intravital/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Nefrite/fisiopatologia , Podócitos/ultraestrutura , Obstrução Ureteral/fisiopatologia , Animais , Movimento Celular , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Células Epiteliais/metabolismo , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Intravital/instrumentação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Nefrite/induzido quimicamente , Nefrite/metabolismo , Podócitos/metabolismo , Análise de Célula Única/métodos , Obstrução Ureteral/metabolismo , Proteína Vermelha Fluorescente
5.
Am J Physiol Renal Physiol ; 315(3): F521-F534, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29667908

RESUMO

The prorenin receptor (PRR) was originally proposed to be a member of the renin-angiotensin system (RAS); however, recent work questioned their association. The present paper describes a functional link between the PRR and RAS in the renal juxtaglomerular apparatus (JGA), a classic anatomical site of the RAS. PRR expression was found in the sensory cells of the JGA, the macula densa (MD), and immunohistochemistry-localized PRR to the MD basolateral cell membrane in mouse, rat, and human kidneys. MD cell PRR activation led to MAP kinase ERK1/2 signaling and stimulation of PGE2 release, the classic pathway of MD-mediated renin release. Exogenous renin or prorenin added to the in vitro microperfused JGA-induced acute renin release, which was inhibited by removing the MD or by the administration of a PRR decoy peptide. To test the function of MD PRR in vivo, we established a new mouse model with inducible conditional knockout (cKO) of the PRR in MD cells based on neural nitric oxide synthase-driven Cre-lox recombination. Deletion of the MD PRR significantly reduced blood pressure and plasma renin. Challenging the RAS by low-salt diet + captopril treatment caused further significant reductions in blood pressure, renal renin, cyclooxygenase-2, and microsomal PGE synthase expression in cKO vs. wild-type mice. These results suggest that the MD PRR is essential in a novel JGA short-loop feedback mechanism, which is integrated within the classic MD mechanism to control renin synthesis and release and to maintain blood pressure.


Assuntos
Pressão Sanguínea , Sistema Justaglomerular/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Receptores de Superfície Celular/metabolismo , Sistema Renina-Angiotensina , Renina/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Técnicas Biossensoriais , Pressão Sanguínea/efeitos dos fármacos , Captopril/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dieta Hipossódica , Dinoprostona/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Sistema Justaglomerular/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prostaglandina-E Sintases/metabolismo , ATPases Translocadoras de Prótons/deficiência , ATPases Translocadoras de Prótons/genética , Ratos Sprague-Dawley , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Sistema Renina-Angiotensina/efeitos dos fármacos , Via Secretória , Transdução de Sinais , ATPases Vacuolares Próton-Translocadoras/genética , Receptor de Pró-Renina
6.
Pflugers Arch ; 469(7-8): 965-974, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28664407

RESUMO

The development of podocyte injury and albuminuria in various glomerular pathologies is still incompletely understood due to technical limitations in studying the glomerular filtration barrier (GFB) in real-time. We aimed to directly visualize the early morphological and functional changes of the GFB during the development of focal segmental glomerulosclerosis (FSGS) using a combination of transmission electron microscopy (TEM) and in vivo multiphoton microscopy (MPM) in the rat puromycin aminonucleoside (PAN) model. We hypothesized that this combined TEM + MPM experimental approach would provide a major technical improvement that would benefit our mechanistic understanding of podocyte detachment. Male Sprague-Dawley (for TEM) or Munich-Wistar-Frömter (for MPM) rats were given a single dose of 100-150 mg/kg body weight PAN i.p. and were either sacrificed and the kidneys processed for TEM or surgically instrumented for in vivo MPM imaging at various times 2-14 days after PAN administration. Both techniques demonstrated hypertrophy and cystic dilatations of the subpodocyte space that developed as early as 2-3 days after PAN. Adhesions of the visceral epithelium to the parietal Bowman's capsule (synechiae) appeared at days 8-10. TEM provided unmatched resolution of podocyte foot process remodeling, while MPM revealed the rapid dynamics of pseudocyst filling, emptying, and rupture, as well as endothelial and podocyte injury, misdirected filtration, and podocyte shedding. Due to the complementary advantages of TEM and MPM, this combined approach can provide an unusally comprehensive and dynamic portrayal of the alterations in podocyte morphology and function during FSGS development. The results advance our understanding of the role and importance of the various cell types, hemodynamics, and mechanical forces in the development of glomerular pathology.


Assuntos
Movimento Celular , Glomerulonefrite/patologia , Podócitos/ultraestrutura , Animais , Glomerulonefrite/etiologia , Masculino , Podócitos/fisiologia , Puromicina Aminonucleosídeo/toxicidade , Ratos , Ratos Sprague-Dawley , Ratos Wistar
7.
Circ Res ; 120(9): 1426-1439, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28167653

RESUMO

RATIONALE: Lymphatic vessels function to drain interstitial fluid from a variety of tissues. Although shear stress generated by fluid flow is known to trigger lymphatic expansion and remodeling, the molecular basis underlying flow-induced lymphatic growth is unknown. OBJECTIVE: We aimed to gain a better understanding of the mechanism by which laminar shear stress activates lymphatic proliferation. METHODS AND RESULTS: Primary endothelial cells from dermal blood and lymphatic vessels (blood vascular endothelial cells and lymphatic endothelial cells [LECs]) were exposed to low-rate steady laminar flow. Shear stress-induced molecular and cellular responses were defined and verified using various mutant mouse models. Steady laminar flow induced the classic shear stress responses commonly in blood vascular endothelial cells and LECs. Surprisingly, however, only LECs showed enhanced cell proliferation by regulating the vascular endothelial growth factor (VEGF)-A, VEGF-C, FGFR3, and p57/CDKN1C genes. As an early signal mediator, ORAI1, a pore subunit of the calcium release-activated calcium channel, was identified to induce the shear stress phenotypes and cell proliferation in LECs responding to the fluid flow. Mechanistically, ORAI1 induced upregulation of Krüppel-like factor (KLF)-2 and KLF4 in the flow-activated LECs, and the 2 KLF proteins cooperate to regulate VEGF-A, VEGF-C, FGFR3, and p57 by binding to the regulatory regions of the genes. Consistently, freshly isolated LECs from Orai1 knockout embryos displayed reduced expression of KLF2, KLF4, VEGF-A, VEGF-C, and FGFR3 and elevated expression of p57. Accordingly, mouse embryos deficient in Orai1, Klf2, or Klf4 showed a significantly reduced lymphatic density and impaired lymphatic development. CONCLUSIONS: Our study identified a molecular mechanism for laminar flow-activated LEC proliferation.


Assuntos
Proliferação de Células , Células Endoteliais/metabolismo , Endotélio Linfático/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Linfangiogênese , Mecanotransdução Celular , Proteína ORAI1/metabolismo , Animais , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Endotélio Linfático/patologia , Endotélio Linfático/fisiopatologia , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Genótipo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Camundongos Knockout , Proteína ORAI1/deficiência , Proteína ORAI1/genética , Fenótipo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Estresse Mecânico , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo
8.
Occup Environ Med ; 73(8): 520-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27312400

RESUMO

OBJECTIVES: Night shift work has been classified as a probable human carcinogen by the International Agency for Research on Cancer, based on experimental studies and limited evidence on human breast cancer risk. Evidence at other cancer sites is scarce. We evaluated the association between night shift work and stomach cancer risk in a population-based case-control study. METHODS: A total of 374 incident stomach adenocarcinoma cases and 2481 population controls were included from the MCC-Spain study. Detailed data on lifetime night shift work were collected including permanent and rotating shifts, and their cumulative duration (years). Adjusted unconditional logistic regression models were used in analysis. RESULTS: A total of 25.7% of cases and 22.5% of controls reported ever being a night shift worker. There was a weak positive, non-significant association between ever having had worked for at least 1 year in permanent night shifts and stomach cancer risk compared to never having worked night shifts (OR=1.2, 95% CI 0.9 to 1.8). However, there was an inverse 'U' shaped relationship with cumulative duration of permanent night shifts, with the highest risk observed in the intermediate duration category (OR 10-20 years=2.0, 95% CI 1.1 to 3.6) (p for trend=0.19). There was no association with ever having had worked in rotating night shifts (OR=0.9, 95% CI 0.6 to 1.2) and no trend according to cumulative duration (p for trend=0.68). CONCLUSION: We found no clear evidence concerning an association between night shift work and stomach cancer risk.


Assuntos
Adenocarcinoma/etiologia , Ritmo Circadiano , Doenças Profissionais/etiologia , Exposição Ocupacional/efeitos adversos , Neoplasias Gástricas/etiologia , Tolerância ao Trabalho Programado , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Fatores de Risco , Espanha
9.
Orv Hetil ; 147(4): 171-4, 2006 Jan 29.
Artigo em Húngaro | MEDLINE | ID: mdl-16515025

RESUMO

INTRODUCTION: The different non-invasive examinations do not result in unambigous results about the long-term determination of right ventricular function providing systemic circulation in children with transposition of the great arteries operated with Senning procedure. AIM: The goal of study was to determine the application of MRI for the observation of right and left ventricular morphology and function, for the recognition of the progression of the disease, and for the necessity of reoperation. METHODS: The authors have observed the morphology and function of the right and left ventricule by ECG triggered short axis MR pictures. For the analysis of MR pictures MASS 5.0 software was used. Authors have determined the end systolic and end diastolic volume, the ejection fraction, the mass, and the stroke volume of the right ventricule, the end systolic and end diastolic volume, ejection fraction, the mass, and the stroke volume of the left ventricle, and the shunt volume. The values of these data corrected to body mass have been calculated. PATIENTS: 176 Senning operations took place between 1980 and 1996. MRI exploration at 21 of the 118 analyzed patients were carried out. RESULTS: The right ventricular ejection fraction value at Senning operated patients is significantly different (49 +/- 9% vs. 70 +/- 4%) from those of healthy children (P < 0.01). Right ventricular stroke volume/m2 and right ventricular end systolic volume/m2 were significantly different compared to normal (43 +/- 10 ml/m2 vs. 48 +/- 7 ml/mn and 46 +/- 16 ml/m2 vs. 21 +/- 5 ml/m2, p < 0.05). Authors found also significant differences in left ventricular ejection fraction in Senning patients as compared to normal (60 +/- 9% vs. 70 +/- 6%, p < 0.01). CONCLUSION: MRI, which is a reliable method of objective determination of right ventricular function, became an available method in Hungary. According to the results, authors might presume that the development of right ventricular dysfunction is expected even among Senning operated children without clinical symptoms, so more frequent control is required. The pathological left ventricular parameters may be explained by ventricular interactions. Authors find MRI an important part of the complex follow-up protocol of Senning operations. MRI data extended by results of other non-invasive explorations are appropriate for the follow-up of right ventricular dysfunction.


Assuntos
Imageamento por Ressonância Magnética , Transposição dos Grandes Vasos/fisiopatologia , Transposição dos Grandes Vasos/cirurgia , Função Ventricular Esquerda , Função Ventricular Direita , Procedimentos Cirúrgicos Cardíacos/métodos , Criança , Pré-Escolar , Progressão da Doença , Eletrocardiografia , Feminino , Humanos , Masculino , Reoperação , Volume Sistólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA