Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Genet Genomic Med ; 9(10): e1796, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34510813

RESUMO

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) is a rare overgrowth syndrome characterized by congenital malformations and predisposition to embryonic tumors. Loss of methylation of imprinting center 2 (IC2) is the most frequent alteration and rarely associated with tumors compared to paternal uniparental disomy of chromosome 11 (UPD(11)pat) and gain of methylation of imprinting center 1. METHODS: Our study aimed to describe the clinical, histopathological and genetic characteristics of two patients and establish genotype-phenotype correlations. The clinical diagnosis was based on the criteria defined by the international expert consensus of BWS. Molecular study of 11p15.5 methylation status was assessed using methylation-specific-multiplex ligation probe amplification (MS-MLPA). RESULTS: Patients were aged 12 months and 3 months and fulfilled the clinical score of BWS. MS-MLPA showed molecular alterations consisting of loss of methylation in IC2 (IC2-LOM) at the maternal allele for one patient and a mosaic UPD(11)pat for the second patient in whom follow-up at 6months revealed adrenocortical carcinoma (ACC) with low grade of malignancy. Molecular subtypes guide the follow-up and tumor surveillance, our major concern. CONCLUSION: We have to take into account the psychological impact of a possible tumor whatever the underlying mechanism is. Nevertheless, the tumor risk remains high for UPD(11)pat. Our study extended the phenotype of BWS with absence of macrosomia in Tunisian patients, contrasting with literature, and added a supplementary case of ACC in the tumor spectrum of BWS patients with UPD(11)pat.


Assuntos
Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Fenótipo , Síndrome de Beckwith-Wiedemann/cirurgia , Biópsia , Epigênese Genética , Feminino , Impressão Genômica , Humanos , Imuno-Histoquímica , Lactente , Masculino , Estudos Retrospectivos , Avaliação de Sintomas , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Tunísia
3.
Nat Med ; 24(8): 1204-1215, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29967352

RESUMO

The failure to develop effective therapies for pediatric glioblastoma (pGBM) and diffuse intrinsic pontine glioma (DIPG) is in part due to their intrinsic heterogeneity. We aimed to quantitatively assess the extent to which this was present in these tumors through subclonal genomic analyses and to determine whether distinct tumor subpopulations may interact to promote tumorigenesis by generating subclonal patient-derived models in vitro and in vivo. Analysis of 142 sequenced tumors revealed multiple tumor subclones, spatially and temporally coexisting in a stable manner as observed by multiple sampling strategies. We isolated genotypically and phenotypically distinct subpopulations that we propose cooperate to enhance tumorigenicity and resistance to therapy. Inactivating mutations in the H4K20 histone methyltransferase KMT5B (SUV420H1), present in <1% of cells, abrogate DNA repair and confer increased invasion and migration on neighboring cells, in vitro and in vivo, through chemokine signaling and modulation of integrins. These data indicate that even rare tumor subpopulations may exert profound effects on tumorigenesis as a whole and may represent a new avenue for therapeutic development. Unraveling the mechanisms of subclonal diversity and communication in pGBM and DIPG will be an important step toward overcoming barriers to effective treatments.


Assuntos
Neoplasias do Tronco Encefálico/patologia , Glioblastoma/patologia , Animais , Neoplasias do Tronco Encefálico/genética , Carcinogênese/patologia , Separação Celular , Criança , Células Clonais , Genótipo , Glioblastoma/genética , Humanos , Camundongos Nus , Fenótipo , Células Tumorais Cultivadas
4.
J Invest Dermatol ; 138(2): 291-300, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28964717

RESUMO

Cole disease is a genodermatosis of pigmentation following a strict dominant mode of inheritance. In this study, we investigated eight patients affected with an overlapping genodermatosis after recessive inheritance. The patients presented with hypo- and hyperpigmented macules over the body, resembling dyschromatosis universalis hereditaria in addition to punctuate palmoplantar keratosis. By homozygosity mapping and whole-exome sequencing, a biallelic p.Cys120Arg mutation in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) was identified in all patients. We found that this mutation, like those causing dominant Cole disease, impairs homodimerization of the ENPP1 enzyme that is mediated by its two somatomedin-B-like domains. Histological analysis revealed structural and molecular changes in affected skin that were likely to originate from defective melanocytes because keratinocytes do not express ENPP1. Consistently, RNA-sequencing analysis of patient-derived primary melanocytes revealed alterations in melanocyte development and in pigmentation signaling pathways. We therefore conclude that germline ENPP1 cysteine-specific mutations, primarily affecting the melanocyte lineage, cause a clinical spectrum of dyschromatosis, in which the p.Cys120Arg allele represents a recessive and more severe form of Cole disease.


Assuntos
Hipopigmentação/genética , Ceratodermia Palmar e Plantar/genética , Melaninas/biossíntese , Melanócitos/metabolismo , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Biópsia , Cisteína/genética , Análise Mutacional de DNA , Feminino , Fibroblastos , Mutação em Linhagem Germinativa , Células HEK293 , Homozigoto , Humanos , Hipopigmentação/diagnóstico , Hipopigmentação/patologia , Queratinócitos/metabolismo , Ceratodermia Palmar e Plantar/diagnóstico , Ceratodermia Palmar e Plantar/patologia , Masculino , Linhagem , Diester Fosfórico Hidrolases/metabolismo , Cultura Primária de Células , Pirofosfatases/metabolismo , Índice de Gravidade de Doença , Pele/citologia , Pele/patologia , Sequenciamento do Exoma
5.
Mol Neurobiol ; 54(4): 2381-2394, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26957305

RESUMO

It has become increasingly evident that morphologically similar gliomas may have distinct clinical phenotypes arising from diverse genetic signatures. To date, glial tumours from the Tunisian population have not been investigated. To address this, we correlated the clinico-pathology with molecular data of 110 gliomas by a combination of HM450K array, MLPA and TMA-IHC. PTEN loss and EGFR amplification were distributed in different glioma histological groups. However, 1p19q co-deletion and KIAA1549:BRAF fusion were, respectively, restricted to Oligodendroglioma and Pilocytic Astrocytoma. CDKN2A loss and EGFR overexpression were more common within high-grade gliomas. Furthermore, survival statistical correlations led us to identify Glioblastoma (GB) prognosis subtypes. In fact, significant lower overall survival (OS) was detected within GB that overexpressed EGFR and Cox2. In addition, IDH1R132H mutation seemed to provide a markedly survival advantage. Interestingly, the association of IDHR132H mutation and EGFR normal status, as well as the association of differentiation markers, defined GB subtypes with good prognosis. By contrast, poor survival GB subtypes were defined by the combination of PTEN loss with PDGFRa expression and/or EGFR amplification. Additionally, GB presenting p53-negative staining associated with CDKN2A loss or p21 positivity represented a subtype with short survival. Thus, distinct molecular subtypes with individualised prognosis were identified. Interestingly, we found a unique histone mutation in a poor survival young adult GB case. This tumour exceptionally associated the H3F3A G34R mutation and MYCN amplification as well as 1p36 loss and 10q loss. Furthermore, by exhibiting a remarkable methylation profile, it emphasised the oncogenic power of G34R mutation connecting gliomagenesis and chromatin regulation.


Assuntos
Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/diagnóstico , Glioma/classificação , Glioma/diagnóstico , Patologia Molecular , Adolescente , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Criança , Pré-Escolar , Análise por Conglomerados , Estudos de Coortes , Metilação de DNA/genética , Epigênese Genética , Feminino , Glioma/genética , Glioma/terapia , Humanos , Imuno-Histoquímica , Lactente , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Prognóstico , Análise de Sobrevida , Análise Serial de Tecidos , Tunísia , Adulto Jovem
6.
Arch Oral Biol ; 71: 110-116, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27491081

RESUMO

BACKGROUND: Dental agenesis is the most common developmental anomaly in man and may present either as an isolated trait or as part of a syndrome, such as ectodermal dysplasia. Until now, the underlying molecular pathogenic mechanisms responsible for dental agenesis are still largely unknown. Several genetic and molecular studies have demonstrated that at least 300 genes are involved in tooth formation and development, coding for specific transcriptional factors, receptors or growth factors that are expressed at specific developmental stages. Dental agenesis in this respect is believed to result from altered expression of one or more of these factors during initiation and early morphogenesis of the tooth germ, and the first actors identified were MSX1 and PAX9. DESIGN: In this study, we focalized on a Tunisian family with a non-syndromic autosomal dominant form of tooth agenesis. In order to screen for the eventual genetic cause of dental agenesis in this family we sequenced 4 genes; PAX9, WNT10A, MSX1 and AXIN2 using Sanger sequencing. RESULTS: Direct Screening analysis of PAX9 gene, revealed a novel mutation p.Asp200Serfs*13. It consists of a duplication of 5 basepairs leading to a codon stop 13 position downstream. This novel mutation was found in all affected family members. CONCLUSIONS: In this report, we present the first genetic study of a Tunisian family with a non-syndromic autosomal dominant form of tooth agenesis, in which we identified in PAX9 gene a novel mutation. It most likely results in nonsense mediated RNA decay and haploinsifficiency that reduce the transactivation capacity of PAX9.


Assuntos
Anodontia/genética , Mutação/genética , Fator de Transcrição PAX9/genética , Anodontia/diagnóstico por imagem , Cefalometria , Feminino , Humanos , Masculino , Linhagem , Fenótipo , Tunísia
7.
Appl Transl Genom ; 4: 1-3, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26937341

RESUMO

Beckwith-Wiedemann syndrome has a wide spectrum of complications such as embryonal tumors, namely adrenocortical tumor. Tumor predisposition is one of the most challenging manifestations of this syndrome. A 45-day old female with a family history of adrenocortical tumor presented with adrenocortical tumor. The case raised suspicion of a hereditary Beckwith-Wiedemann syndrome, therefore molecular analysis was undertaken. The results revealed partial KCNQ1OT1 hypomethylation in the infant's blood DNA which was associated with a complete loss of methylation in the infant's adrenocortical tumor tissue. It is unique for familial Beckwith-Wiedemann syndrome caused by KCNQ1OT1 partial hypomethylation to manifest solely through adrenocortical tumor. Incomplete penetrance and specific tissue mosaicism could provide explanations to this novel hereditary Beckwith-Wiedemann syndrome presentation.

8.
Tunis Med ; 93(8-9): 527-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26815518

RESUMO

BACKGROUND: Neuroblastoma (NB) shows a complex combination of genetic aberrations. Some of them represent poor genetic prognosis factors that require specific and intensive chemotherapy. MYCN amplification consists of the major bad outcome prognostic factor, it is indeed frequently observed in aggressive neuroblastomas. To date different methods are used for MYCN status detection. OBJECTIVES: The primary aim of our study was to provide a critical assessment of MYCN status using 2 molecular techniques CISH and MLPA. We also focused on the correlation between neuroblastoma genetic markers and patient's clinical course among 15 Tunisian patients. METHODS: we developed a descriptive study that includes 15 pediatric Tunisian patients referred to our laboratory from 2004 to 2011. We reported the analysis of fresh and FFPE NB tumors tissues. RESULTS: No significant correlation was found between COG grade and patients overall survival. Assessment of NMYC gene copy number by kappa statistic test revealed high concordance between CISH and MLPA tests (kappa coefficient = 0.02). CONCLUSION: Despite misdiagnosing of MYCN status fewer than 5 copies, MLPA remains an effective molecular technique that enables a large panel of genomic aberrations screening. Thus combining CISH and MLPA is an effective molecular approach adopted in our laboratory. Our results allow pediatric oncologists to set up the first Neuroblastoma therapeutic strategy based on molecular markers in Tunisia.


Assuntos
Neoplasias Encefálicas/genética , Amplificação de Genes , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Criança , Pré-Escolar , Humanos , Hibridização In Situ , Lactente , Recém-Nascido , Reação em Cadeia da Polimerase Multiplex , Proteína Proto-Oncogênica N-Myc , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA