Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3239, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277347

RESUMO

Innate immune responses vary by pathogen and host genetics. We analyze quantitative trait loci (eQTLs) and transcriptomes of monocytes from 215 individuals stimulated by fungal, Gram-negative or Gram-positive bacterial pathogens. We identify conserved monocyte responses to bacterial pathogens and a distinct antifungal response. These include 745 response eQTLs (reQTLs) and corresponding genes with pathogen-specific effects, which we find first in samples of male donors and subsequently confirm for selected reQTLs in females. reQTLs affect predominantly upregulated genes that regulate immune response via e.g., NOD-like, C-type lectin, Toll-like and complement receptor-signaling pathways. Hence, reQTLs provide a functional explanation for individual differences in innate response patterns. Our identified reQTLs are also associated with cancer, autoimmunity, inflammatory and infectious diseases as shown by external genome-wide association studies. Thus, reQTLs help to explain interindividual variation in immune response to infection and provide candidate genes for variants associated with a range of diseases.


Assuntos
Estudo de Associação Genômica Ampla , Imunidade Inata , Feminino , Humanos , Masculino , Imunidade Inata/genética , Monócitos/metabolismo , Locos de Características Quantitativas/genética , Variação Genética
2.
Sci Transl Med ; 14(664): eabh1209, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36170447

RESUMO

Aspergillus fumigatus is a ubiquitous mold that can cause severe infections in immunocompromised patients, typically manifesting as invasive pulmonary aspergillosis (IPA). Adaptive and innate immune cells that respond to A. fumigatus are present in the endogenous repertoire of patients with IPA but are infrequent and cannot be consistently isolated and expanded for adoptive immunotherapy. Therefore, we gene-engineered A. fumigatus-specific chimeric antigen receptor (Af-CAR) T cells and demonstrate their ability to confer antifungal reactivity in preclinical models in vitro and in vivo. We generated a CAR targeting domain AB90-E8 that recognizes a conserved protein antigen in the cell wall of A. fumigatus hyphae. T cells expressing the Af-CAR recognized A. fumigatus strains and clinical isolates and exerted a direct antifungal effect against A. fumigatus hyphae. In particular, CD8+ Af-CAR T cells released perforin and granzyme B and damaged A. fumigatus hyphae. CD8+ and CD4+ Af-CAR T cells produced cytokines that activated macrophages to potentiate the antifungal effect. In an in vivo model of IPA in immunodeficient mice, CD8+ Af-CAR T cells localized to the site of infection, engaged innate immune cells, and reduced fungal burden in the lung. Adoptive transfer of CD8+ Af-CAR T cells conferred greater antifungal efficacy compared to CD4+ Af-CAR T cells and an improvement in overall survival. Together, our study illustrates the potential of gene-engineered T cells to treat aggressive infectious diseases that are difficult to control with conventional antimicrobial therapy and support the clinical development of Af-CAR T cell therapy to treat IPA.


Assuntos
Aspergilose Pulmonar Invasiva , Receptores de Antígenos Quiméricos , Animais , Antifúngicos , Aspergillus fumigatus , Citocinas , Granzimas , Aspergilose Pulmonar Invasiva/terapia , Camundongos , Perforina , Linfócitos T
3.
J Fungi (Basel) ; 8(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35205926

RESUMO

Despite available diagnostic tests and recent advances, diagnosis of pulmonary invasive aspergillosis (IPA) remains challenging. We performed a longitudinal case-control pilot study to identify host-specific, novel, and immune-relevant molecular candidates indicating IPA in patients post allogeneic stem cell transplantation (alloSCT). Supported by differential gene expression analysis of six relevant in vitro studies, we conducted RNA sequencing of three alloSCT patients categorized as probable IPA cases and their matched controls without Aspergillus infection (66 samples in total). We additionally performed immunoassay analysis for all patient samples to gain a multi-omics perspective. Profiling analysis suggested LGALS2, MMP1, IL-8, and caspase-3 as potential host molecular candidates indicating IPA in investigated alloSCT patients. MMP1, IL-8, and caspase-3 were evaluated further in alloSCT patients for their potential to differentiate possible IPA cases and patients suffering from COVID-19-associated pulmonary aspergillosis (CAPA) and appropriate control patients. Possible IPA cases showed differences in IL-8 and caspase-3 serum levels compared with matched controls. Furthermore, we observed significant differences in IL-8 and caspase-3 levels among CAPA patients compared with control patients. With our conceptual work, we demonstrate the potential value of considering the human immune response during Aspergillus infection to identify immune-relevant molecular candidates indicating IPA in alloSCT patients. These human host candidates together with already established fungal biomarkers might improve the accuracy of IPA diagnostic tools.

4.
Curr Opin Microbiol ; 58: 153-159, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33190074

RESUMO

Invasive fungal infections mainly occur in patients suffering from impaired immunity. Their associated mortality is high despite antifungal treatment. Thus, several efforts have been made to translate our knowledge on protective antifungal immunity into clinical application. Since the first attempts with transfusion of neutrophilic granulocytes, these approaches have become more refined and include administration of cytokines to booster antifungal immune responses or selective stimulation of pattern recognition receptors. Recently, novel tools that have proven effective in the treatment of cancer have offered new options for enhancing antifungal immunity. These approaches include checkpoint inhibitors as well as T-cell based therapies, including chimeric antigen receptor T-cells.


Assuntos
Antifúngicos/uso terapêutico , Fungos/fisiologia , Micoses/imunologia , Animais , Fungos/efeitos dos fármacos , Fungos/genética , Humanos , Micoses/tratamento farmacológico , Micoses/genética , Micoses/microbiologia , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia
5.
Nature ; 532(7597): 64-8, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27027296

RESUMO

Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name 'Candidalysin' for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.


Assuntos
Candida albicans/metabolismo , Candida albicans/patogenicidade , Citotoxinas/metabolismo , Proteínas Fúngicas/toxicidade , Micotoxinas/toxicidade , Fatores de Virulência/metabolismo , Cálcio/metabolismo , Candida albicans/imunologia , Candidíase/metabolismo , Candidíase/microbiologia , Candidíase/patologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citotoxinas/genética , Citotoxinas/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mucosa/microbiologia , Mucosa/patologia , Micotoxinas/genética , Micotoxinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Virulência/efeitos dos fármacos , Fatores de Virulência/genética , Fatores de Virulência/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA