Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Pharm ; 21(6): 2751-2766, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38693707

RESUMO

Innate defense regulator-1002 (IDR-1002) is a synthetic peptide with promising immunomodulatory and antibiofilm properties. An appreciable body of work exists around its mechanism of action at the cellular and molecular level, along with its efficacy across several infection and inflammation models. However, little is known about its absorption, distribution, and excretion in live organisms. Here, we performed a comprehensive biodistribution assessment with a gallium-67 radiolabeled derivative of IDR-1002 using nuclear tracing techniques. Various dose levels of the radiotracer (2-40 mg/kg) were administered into the blood, peritoneal cavity, and subcutaneous tissue, or instilled into the lungs. The peptide was well tolerated at all subcutaneous and intraperitoneal doses, although higher levels were associated with delayed absorption kinetics and precipitation of the peptide within the tissues. Low intratracheal doses were rapidly absorbed systemically, and small increases in the dose level were lethal. Intravenous doses were rapidly cleared from the blood at lower levels, and upon escalation, were toxic with a high proportion of the dose accumulating within the lung tissue. To improve biocompatibility and prolong its circulation within the blood, IDR-1002 was further formulated onto high molecular weight hyperbranched polyglycerol (HPG) polymers. Constructs prepared at 5:1 and 10:1 peptide-to-polymer ratios were colloidally stable, maintained the biological profile of the peptide payload and helped reduce red blood cell lysis. The 5:1 construct circulated well in the blood, but higher peptide loading was associated with rapid clearance by the reticuloendothelial system. Many peptides face pharmacokinetic and biocompatibility challenges, but formulations such as those with HPG have the potential to overcome these limitations.


Assuntos
Radioisótopos de Gálio , Animais , Distribuição Tecidual , Camundongos , Radioisótopos de Gálio/farmacocinética , Radioisótopos de Gálio/química , Radioisótopos de Gálio/administração & dosagem , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Peptídeos/química , Peptídeos/farmacocinética , Feminino , Nanopartículas/química , Camundongos Endogâmicos C57BL , Masculino , Imunidade Inata/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/farmacocinética , Peptídeos Catiônicos Antimicrobianos/química
2.
PLoS One ; 19(4): e0300466, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626058

RESUMO

Pretargeting, which is the separation of target accumulation and the administration of a secondary imaging agent into two sequential steps, offers the potential to improve image contrast and reduce radiation burden for nuclear imaging. In recent years, the tetrazine ligation has emerged as a promising approach to facilitate covalent pretargeted imaging due to its unprecedented kinetics and bioorthogonality. Pretargeted bone imaging with TCO-modified alendronic acid (Aln-TCO) is an attractive model that allows the evaluation of tetrazines in healthy animals without the need for complex disease models or targeting regimens. Recent structure-activity relationship studies of tetrazines evaluated important parameters for the design of potent tetrazine-radiotracers for pretargeted imaging. However, limited information is available for 99mTc-labeled tetrazines. In this study, four tetrazines intended for labeling with fac-[99mTc(OH2)3 (CO)3]+ were synthesized and evaluated using an Aln-TCO mouse model. 3,6-bis(2-pyridyl)-1,2,4,5-Tz without additional linker showed higher pretargeted bone uptake and less background activity compared to the same scaffold with a PEG8 linker or 3-phenyl-1,2,4,5-Tz-based compounds. Additionally, improved bone/blood ratios were observed in pretargeted animals compared to animals receiving directly labeled Aln-TCO. The results of this study implicate 3,6-bis(2-pyridyl)-1,2,4,5-Tz as a promising scaffold for potential 99mTc-labeled tetrazines.


Assuntos
Compostos Heterocíclicos , Tomografia Computadorizada por Raios X , Animais , Camundongos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Linhagem Celular Tumoral , Compostos Radiofarmacêuticos , Tomografia por Emissão de Pósitrons/métodos
3.
Biomaterials ; 308: 122567, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38603825

RESUMO

Frequent injections of anti-CD124 monoclonal antibody (αCD124) over long periods of time are used to treat chronic rhinosinusitis with nasal polyps (CRSwNP). Needle-free, intranasal administration (i.n.) of αCD124 is expected to provide advantages of localized delivery, improved efficacy, and enhanced medication adherence. However, delivery barriers such as the mucus and epithelium in the nasal tissue impede penetration of αCD124. Herein, two novel protamine nanoconstructs: allyl glycidyl ether conjugated protamine (Nano-P) and polyamidoamine-linked protamine (Dendri-P) were synthesized and showed enhanced αCD124 penetration through multiple epithelial layers compared to protamine in mice. αCD124 was mixed with Nano-P or Dendri-P and then intranasally delivered for the treatment of severe CRSwNP in mice. Micro-CT and pathological changes in nasal turbinates showed that these two nano-formulations achieved ∼50 % and ∼40 % reductions in nasal polypoid lesions and eosinophil count, respectively. Both nano-formulations provided enhanced efficacy in suppressing nasal and systemic Immunoglobulin E (IgE) and nasal type 2 inflammatory biomarkers, such as interleukin 13 (IL-13) and IL-25. These effects were superior to those in the protamine formulation group and subcutaneous (s.c.) αCD124 given at a 12.5-fold higher dose. Intranasal delivery of protamine, Nano-P, or Dendri-P did not induce any measurable toxicities in mice.


Assuntos
Anticorpos Monoclonais , Pólipos Nasais , Protaminas , Rinossinusite , Animais , Feminino , Camundongos , Administração Intranasal , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Doença Crônica , Camundongos Endogâmicos BALB C , Pólipos Nasais/tratamento farmacológico , Pólipos Nasais/patologia , Protaminas/química , Rinossinusite/tratamento farmacológico
4.
Sci Robot ; 9(87): eadh8702, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354257

RESUMO

Using external actuation sources to navigate untethered drug-eluting microrobots in the bloodstream offers great promise in improving the selectivity of drug delivery, especially in oncology, but the current field forces are difficult to maintain with enough strength inside the human body (>70-centimeter-diameter range) to achieve this operation. Here, we present an algorithm to predict the optimal patient position with respect to gravity during endovascular microrobot navigation. Magnetic resonance navigation, using magnetic field gradients in clinical magnetic resonance imaging (MRI), is combined with the algorithm to improve the targeting efficiency of magnetic microrobots (MMRs). Using a dedicated microparticle injector, a high-precision MRI-compatible balloon inflation system, and a clinical MRI, MMRs were successfully steered into targeted lobes via the hepatic arteries of living pigs. The distribution ratio of the microrobots (roughly 2000 MMRs per pig) in the right liver lobe increased from 47.7 to 86.4% and increased in the left lobe from 52.2 to 84.1%. After passing through multiple vascular bifurcations, the number of MMRs reaching four different target liver lobes had a 1.7- to 2.6-fold increase in the navigation groups compared with the control group. Performing simulations on 19 patients with hepatocellular carcinoma (HCC) demonstrated that the proposed technique can meet the need for hepatic embolization in patients with HCC. Our technology offers selectable direction for actuator-based navigation of microrobots at the human scale.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Robótica , Humanos , Animais , Suínos , Artéria Hepática/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem
5.
Eur J Pharm Biopharm ; 196: 114180, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237643

RESUMO

Hepatocellular carcinoma (HCC) is widely known to be chemo-resistant and presents with significant liver disease resulting in low tolerability to systemic chemotherapy. As a counter measure, more targeted therapies such as trans-arterial chemoembolization (TACE) and trans-arterial radioembolization (TARE) have been developed. To further optimize these therapies, animal models are critical in elucidating the molecular events in disease progression and test new treatment options. The present study focuses on the development of a hepatoma bearing rat model. N1S1 rat hepatoma cells were transfected by a lentiviral method and injected into the liver of Sprague Dawley (SD) and Rowett Nude (RNU) rats. Longitudinal tumor growth was observed by bioluminescence imaging (BLI) and liver/tumor histology. In both models, tumors were visible within 4 days post cell inoculation. Tumor take rates were 52 % and 73 % for male and female SD rats, respectively, and 100 % for male RNU rats. By day 12 and 15 post inoculation, we recorded complete tumor regression in male and female SD rats. Liver histology showed advanced fibrosis in the tumor regressed SD rats, whilst RNU rats exhibited the characteristic sheet pattern of Novikoff tumor with mild liver fibrosis. Increased CD3 and TUNEL staining observed in SD rat livers may be key factors for tumor regression. Our data reveal that the immunocompetent SD rats are not recommended as a model for therapeutic investigations. The immunosuppressed RNU rats, however, are characterized by consistent and reliable tumor growth and thus a desirable model for future therapeutic investigations.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Ratos , Masculino , Feminino , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/terapia , Ratos Sprague-Dawley , Quimioembolização Terapêutica/métodos , Modelos Animais
6.
ACS Omega ; 8(12): 11003-11020, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008162

RESUMO

Aptamers are promising targeting agents for imaging and therapy of numerous diseases, including cancer. However, a significant shortcoming of aptamers is their poor stability and fast excretion, limiting their application in vivo. Common strategies to overcome these challenges is to chemically modify aptamers in order to increase their stability and/or to apply formulation technologies such as conjugating them to polymers or nanocarriers in order to increase their circulation half-life. This is expected to result in improved cellular uptake or retention to passively targeted nanomedicines. Herein, we report a modular conjugation strategy based on click chemistry between functionalized tetrazines and trans-cyclooctene (TCO), for the modification of high molecular weight hyperbranched polyglycerol (HPG) with sgc8 aptamer, fluorescent dyes, and 111In. Our data indicate strong affinity of sgc8 against a range of solid tumor-derived cell lines that have previously not been tested with this aptamer. Nevertheless, nonspecific uptake of scrambled ssDNA-functionalized HPG in cells highlights inherent challenges of aptamer-targeted probes that remain to be solved for clinical translation. We validate HPG-sgc8 as a nontoxic nanoprobe with high affinity against MDA-MB-468 breast and A431 lung cancer cells and show significantly increased plasma stability compared to free sgc8. In vivo quantitative SPECT/CT imaging indicates EPR-mediated tumor uptake of HPG-sgc8 and nontargeted or scrambled ssDNA-conjugated HPG but no statistically significant difference between these formulations in terms of total tumor uptake or retention. Our study emphasizes the need for stringent controls and quantification in the evaluation of aptamer-targeted probes. For this purpose, our versatile synthesis strategy provides a simple approach for the design and evaluation of long-circulating aptamer-conjugated nanoformulations.

7.
IEEE Trans Biomed Eng ; 69(8): 2616-2627, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35167442

RESUMO

OBJECTIVE: Superparamagnetic nanoparticles (SPIONs) can be combined with tumor chemoembolization agents to form magnetic drug-eluting beads (MDEBs), which are navigated magnetically in the MRI scanner through the vascular system. We aim to develop a method to accurately quantify and localize these particles and to validate the method in phantoms and swine models. METHODS: MDEBs were made of Fe3O4 SPIONs. After injected known numbers of MDEBs, susceptibility artifacts in three-dimensional (3D) volumetric interpolated breath-hold examination (VIBE) sequences were acquired in glass and Polyvinyl alcohol (PVA) phantoms, and two living swine. Image processing of VIBE images provided the volume relationship between MDEBs and their artifact at different VIBE acquisitions and post-processing parameters. Simulated hepatic-artery embolization was performed in vivo with an MRI-conditional magnetic-injection system, using the volume relationship to locate and quantify MDEB distribution. RESULTS: Individual MDEBs were spatially identified, and their artifacts quantified, showing no correlation with magnetic-field orientation or sequence bandwidth, but exhibiting a relationship with echo time and providing a linear volume relationship. Two MDEB aggregates were magnetically steered into desired liver regions while the other 19 had no steering, and 25 aggregates were injected into another swine without steering. The MDEBs were spatially identified and the volume relationship showed accuracy in assessing the number of the MDEBs, with small errors (≤ 8.8%). CONCLUSION AND SIGNIFICANCE: MDEBs were able to be steered into desired body regions and then localized using 3D VIBE sequences. The resulting volume relationship was linear, robust, and allowed for quantitative analysis of the MDEB distribution.


Assuntos
Imageamento Tridimensional , Imageamento por Ressonância Magnética , Animais , Artefatos , Meios de Contraste , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Nanopartículas Magnéticas de Óxido de Ferro , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Suínos
9.
Int J Pharm ; 606: 120884, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34271154

RESUMO

Radiolabeling of a drug with radioactive iodine is a good method to determine its pharmacokinetics and biodistribution in vivo that only minimally alters its physicochemical properties. With dual labeling, using the two radioactive iodine isotopes 123I and 125I, two different drugs can be evaluated at the same time, or one can follow both a drug and its drug delivery system using a single photon emission computed tomography (SPECT) imager. One difficulty is that the two radioisotopes have overlapping gamma spectra. Our aim was therefore to develop a technique that overcomes this problem and allows for quantitative analysis of the two radioisotopes present at varied isotope ratios. For this purpose, we developed a simple method that included scatter and attenuation corrections and fully compensated for 123I/125I crosstalk, and then tested it in phantom measurements. The method was applied to the study of an orally administered lipid formulation for the delivery of fenofibrate in rats. To directly compare a traditional study, where fenofibrate was determined in plasma samples to SPECT imaging with 123I-labeled fenofibrate and 125I-labeled triolein over 24 h, the drug concentrations were converted to standardized uptake values (SUVs), an unusual unit for pharmaceutical scientists, but the standard unit for radiologists. A generally good agreement between the traditional and the radioactive imaging method was found in the pharmacokinetics and biodistribution results. Small differences are discussed in detail. Overall, SPECT imaging is an excellent method to pilot a new formulation with just a few animals, replaces blood sampling, and can very quickly highlight potential administration problems, the excretion pathways and the kinetics. Furthermore, dual labeling with the two radioisotopes 123I and 125I clearly shows if a drug and its drug delivery system stay together when traveling through the body, if slow drug release takes place, and where degradation/excretion of the components occurs.


Assuntos
Preparações Farmacêuticas , Neoplasias da Glândula Tireoide , Animais , Radioisótopos do Iodo , Imagens de Fantasmas , Ratos , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
10.
ACS Appl Mater Interfaces ; 13(9): 10705-10718, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33635046

RESUMO

The validation of metal-phenolic nanoparticles (MPNs) in preclinical imaging studies represents a growing field of interest due to their versatility in forming predesigned structures with unique properties. Before MPNs can be used in medicine, their pharmacokinetics must be optimized so that accumulation in nontargeted organs is prevented and toxicity is minimized. Here, we report the fabrication of MPNs made of a coordination polymer core that combines In(III), Cu(II), and a mixture of the imidazole 1,4-bis(imidazole-1-ylmethyl)-benzene and the catechol 3,4-dihydroxycinnamic acid ligands. Furthermore, a phenolic-based coating was used as an anchoring platform to attach poly(ethylene glycol) (PEG). The resulting MPNs, with effective hydrodynamic diameters of around 120 nm, could be further derivatized with surface-embedded molecules, such as folic acid, to facilitate in vivo targeting and multifunctionality. The prepared MPNs were evaluated for in vitro plasma stability, cytotoxicity, and cell internalization and found to be biocompatible under physiological conditions. First, biomedical evaluations were then performed by intrinsically incorporating trace amounts of the radioactive metals 111In or 64Cu during the MPN synthesis directly into their polymeric matrix. The resulting particles, which had identical physicochemical properties to their nonradioactive counterparts, were used to perform in vivo single-photon emission computed tomography (SPECT) and positron emission tomography (PET) in tumor-bearing mice. The ability to incorporate multiple metals and radiometals into MPNs illustrates the diverse range of functional nanoparticles that can be prepared with this approach and broadens the scope of these nanoconstructs as multimodal preclinical imaging agents.


Assuntos
Ácidos Cafeicos/química , Nanopartículas Metálicas/química , Neoplasias/diagnóstico por imagem , Compostos Radiofarmacêuticos/química , Animais , Ácidos Cafeicos/farmacocinética , Ácidos Cafeicos/toxicidade , Linhagem Celular Tumoral , Radioisótopos de Cobre/química , Radioisótopos de Cobre/farmacocinética , Radioisótopos de Cobre/toxicidade , Feminino , Humanos , Imidazóis/química , Imidazóis/farmacocinética , Imidazóis/toxicidade , Radioisótopos de Índio/química , Radioisótopos de Índio/farmacocinética , Radioisótopos de Índio/toxicidade , Ligantes , Nanopartículas Metálicas/toxicidade , Camundongos Endogâmicos BALB C , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Estudo de Prova de Conceito , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/toxicidade , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
11.
Ann Biomed Eng ; 47(12): 2402-2415, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31290038

RESUMO

This work combines a particle injection system with our proposed magnetic resonance navigation (MRN) sequence with the intention of validating MRN in a two-bifurcation phantom for endovascular treatment of hepatocellular carcinoma (HCC). A theoretical physical model used to calculate the most appropriate size of the magnetic drug-eluting bead (MDEB, 200 µm) aggregates was proposed. The aggregates were injected into the phantom by a dedicated particle injector while a trigger signal was automatically sent to the MRI to start MRN which consists of interleaved tracking and steering sequences. When the main branch of the phantom was parallel to B0, the aggregate distribution ratio in the (left-left, left-right, right-left and right-right divisions was obtained with results of 8, 68, 24 and 0% respectively at baseline (no MRN) and increased to 84%, 100, 84 and 92% (p < 0.001, p = 0.004, p < 0.001, p < 0.001) after implementing our MRN protocol. When the main branch was perpendicular to B0, the right-left branch, having the smallest baseline distribution rate of 0%, reached 80% (p < 0.001) after applying MRN. Moreover, the success rate of MRN was always more than 92% at the 1st bifurcation in the experiments above.


Assuntos
Carcinoma Hepatocelular/terapia , Embolização Terapêutica/instrumentação , Neoplasias Hepáticas/terapia , Imageamento por Ressonância Magnética/instrumentação , Modelos Teóricos , Desenho de Equipamento , Humanos , Nanopartículas de Magnetita , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
12.
Theranostics ; 9(3): 868-883, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30809314

RESUMO

A common form of treatment for patients with hepatocellular carcinoma (HCC) is transarterial radioembolization (TARE) with non-degradable glass or resin microspheres (MS) labeled with 90Y (90Y-MS). To further simplify the dosimetry calculations in the clinical setting, to have more control over the particle size and to change the permanent embolization to a temporary one, we developed uniformly-sized, biodegradable 188Re-labeled MS (188Re-MS) as a new and easily imageable TARE agent. Methods: MS made of poly(L-lactic acid) were produced in a flow focusing microchip. The MS were labeled with 188Re using a customized kit. An orthotopic HCC animal model was developed in male Sprague Dawley rats by injecting N1-S1 cells directly into the liver using ultrasound guidance. A suspension of 188Re-MS was administered via hepatic intra-arterial catheterization 2 weeks post-inoculation of the N1-S1 cells. The rats were imaged by SPECT 1, 24, 48, and 72 h post-radioembolization. Results: The spherical 188Re-MS had a diameter of 41.8 ± 6.0 µm (CV = 14.5%). The site and the depth of the injection of N1-S1 cells were controlled by visualization of the liver in sonograms. Single 0.5 g tumors were grown in all rats. 188Re-MS accumulated in the liver with no deposition in the lungs. 188Re decays to stable 188Os by emission of ߯ particles with similar energy to those emitted by 90Y while simultaneously emitting γ photons, which were imaged directly by single photon computed tomography (SPECT). Using Monte Carlo methods, the dose to the tumors was calculated to be 3-6 times larger than to the healthy liver tissue. Conclusions:188Re-MS have the potential to become the next generation of ߯-emitting MS for TARE. Future work revolves around the investigation of the therapeutic potential of 188Re-MS in a large-scale, long-term preclinical study as well as the evaluation of the clinical outcomes of using 188Re-MS with different sizes, from 20 to 50 µm.


Assuntos
Carcinoma Hepatocelular/terapia , Portadores de Fármacos , Embolização Terapêutica/métodos , Microesferas , Radioisótopos/administração & dosagem , Radioterapia/métodos , Rênio/administração & dosagem , Animais , Carcinoma Hepatocelular/diagnóstico , Modelos Animais de Doenças , Humanos , Dosimetria in Vivo/métodos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/terapia , Poliésteres , Ratos Sprague-Dawley , Resultado do Tratamento
13.
Med Phys ; 46(2): 789-799, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30451303

RESUMO

PURPOSE: The purpose of this study was to demonstrate the feasibility of using a custom gradient sequence on an unmodified 3T magnetic resonance imaging (MRI) scanner to perform magnetic resonance navigation (MRN) by investigating the blood flow control method in vivo, reproducing the obtained rheology in a phantom mimicking porcine hepatic arterial anatomy, injecting magnetized microbead aggregates through an implantable catheter, and steering the aggregates across arterial bifurcations for selective tumor embolization. MATERIALS AND METHODS: In the first phase, arterial hepatic velocity was measured using cine phase-contrast imaging in seven pigs under free-flow conditions and controlled-flow conditions, whereby a balloon catheter is used to occlude arterial flow and saline is injected at different rates. Three of the seven pigs previously underwent selective lobe embolization to simulate a chemoembolization procedure. In the second phase, the measured in vivo controlled-flow velocities were approximately reproduced in a Y-shaped vascular bifurcation phantom by injecting saline at an average rate of 0.6 mL/s with a pulsatile component. Aggregates of 200-µm magnetized particles were steered toward the right or left hepatic branch using a 20-mT/m MRN gradient. The phantom was oriented at 0°, 45°, and 90° with respect to the B0 magnetic field. The steering differences between left-right gradient and baseline were calculated using Fisher's exact test. A theoretical model of the trajectory of the aggregate within the main phantom branch taking into account gravity, magnetic force, and hydrodynamic drag was also designed, solved, and validated against the experimental results to characterize the physical limitations of the method. RESULTS: At an injection rate of 0.5 mL/s, the average flow velocity decreased from 20 ± 15 to 8.4 ± 5.0 cm/s after occlusion in nonembolized pigs and from 13.6 ± 2.0 to 5.4 ± 3.0 cm/s in previously embolized pigs. The pulsatility index measured to be 1.7 ± 1.8 and 1.1 ± 0.1 for nonembolized and embolized pigs, respectively, decreased to 0.6 ± 0.4 and 0.7 ± 0.3 after occlusion. For MRN performed at each orientation, the left-right distribution of aggregates was 55%, 25%, and 75% on baseline and 100%, 100%, and 100% (P < 0.001, P = 0.003, P = 0.003) after the application of MRN, respectively. According to the theoretical model, the aggregate reaches a stable transverse position located toward the direction of the gradient at a distance equal to 5.8% of the radius away from the centerline within 0.11 s, at which point the aggregate will have transited through a longitudinal distance of 1.0 mm from its release position. CONCLUSION: In this study, we showed that the use of a balloon catheter reduces arterial hepatic flow magnitude and variation with the aim to reduce steering failures caused by fast blood flow rates and low magnetic steering forces. A mathematical model confirmed that the reduced flow rate is low enough to maximize steering ratio. After reproducing the flow rate in a vascular bifurcation phantom, we demonstrated the feasibility of MRN after injection of microparticle aggregates through a dedicated injector. This work is an important step leading to MRN-based selective embolization techniques in humans.


Assuntos
Embolização Terapêutica/métodos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imãs/química , Microesferas , Animais , Estudos de Viabilidade , Suínos
14.
IEEE Trans Biomed Eng ; 66(8): 2331-2340, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30575528

RESUMO

OBJECTIVE: Dipole field navigation and magnetic resonance navigation exploit B0 magnetic fields and imaging gradients for targeted intra-arterial therapies by using magnetic drug-eluting beads (MDEBs). The strong magnetic strength (1.5 or 3 T) of clinical magnetic resonance imaging (MRI) scanners is the main challenge preventing the formation and controlled injection of specific-sized particle aggregates. Here, an MRI-compatible injector is proposed to solve the above problem. METHODS: The injector consists of two peristaltic pumps, an optical counter, and a magnetic trap. The magnetic property of microparticles, the magnetic compatibility of different parts within the injector, and the field distribution of the MRI system were studied to determine the optimal design and setup of the injector. The performance was investigated through 30.4-emu/g biocompatible magnetic microparticles (230 ± 35 µm in diameter) corresponding to the specifications needed for trans-arterial chemoembolization in human adults. RESULTS: The system can form aggregates containing 20 to 60 microparticles with a precision of six particles. The corresponding aggregate lengths range from 1.6 to 3.2 mm. Based on the injections of 50 MRI-visible boluses into a phantom which mimics realistic physiological conditions, 82% of the aggregates successfully reached subbranches. CONCLUSION AND SIGNIFICANCE: This system has the capability to operate within the strong magnetic field of a clinical 3-T MRI, to form proper particle aggregates and to automatically inject these aggregates into the MRI bore. Moreover, the versatility of the proposed injector renders it suitable for selective injections of MDEBs during MR-guided embolization procedures.


Assuntos
Embolização Terapêutica/instrumentação , Injeções/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Nanopartículas de Magnetita/uso terapêutico , Desenho de Equipamento , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Imageamento por Ressonância Magnética/métodos , Tamanho da Partícula , Imagens de Fantasmas
15.
ACS Biomater Sci Eng ; 4(3): 1092-1102, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33418793

RESUMO

Droplet microfluidics technology has recently been introduced to generate particles for many biomedical applications that include therapeutic embolizing agents in hepatic, uterine or bronchial arteries. Embolic agents are available in a variety of shapes and sizes that are adjusted according to the target vessel characteristics. Magnetic embolic agents can additionally be navigated to the target location (e.g., a tumor) through the blood system by applying an external magnetic field. This technology is termed Magnetic Resonance Navigation (MRN). Here we introduce a high throughput method to produce homogeneously sized magnetic microspheres (MMS) as blood vessel embolic agents for use in combination with MRN. The system for MMS production consists of a simple 3D printed micro coflowing device that is able to produce biocompatible, degradation rate controllable poly(lactic-co-glycolic acid) (PLGA) microspheres encasing magnetic nanoparticles. Axisymmetric flow is obtained with a central needle injecting the dispersed phase surrounded by a continuous phase and leads to the formation of size-controlled droplets that turn into homogeneously sized MMS linearly dependent on the inner needle diameter. MMS morphology, mean particle size and size distribution were quantified from SEM images. Magnetic performance of MMS was investigated using a vibrating sample magnetometer. MMS were nontoxic toward HUVEC (human umbilical vein endothelial cells) and HEK293 (human embryonic kidney) cells. The presented micro coflowing method allows for the reliable production of large MMS sized 130-700 µm with narrow size distribution (CV < 7%) and magnetic properties useful for MRN.

16.
Nanoscale ; 9(47): 18723-18730, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29165498

RESUMO

Magnetic Particle Imaging (MPI) is an emerging, whole body biomedical imaging technique, with sub-millimeter spatial resolution and high sensitivity to a biocompatible contrast agent consisting of an iron oxide nanoparticle core and a biofunctionalized shell. Successful application of MPI for imaging of cancer depends on the nanoparticles (NPs) accumulating at tumors at sufficient levels relative to other sites. NPs' physiochemical properties such as size, crystallographic structure and uniformity, surface coating, stability, blood circulation time and magnetization determine the efficacy of their tumor accumulation and MPI signal generation. Here, we address these criteria by presenting strategies for the synthesis and surface functionalization of efficient MPI tracers, that can target a typical murine brain cancer model and generate three dimensional images of these tumors with very high signal-to-noise ratios (SNR). Our results showed high contrast agent sensitivities that enabled us to detect 1.1 ng of iron (SNR ∼ 3.9) and enhance the spatial resolution to about 600 µm. The biodistribution of these NPs was also studied using near-infrared fluorescence (NIRF) and single-photon emission computed tomography (SPECT) imaging. NPs were mainly accumulated in the liver and spleen and did not show any renal clearance. This first pre-clinical study of cancer targeted NPs imaged using a tomographic MPI system in an animal model paves the way to explore new nanomedicine strategies for cancer diagnosis and therapy, using clinically safe magnetic iron oxide nanoparticles and MPI.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Glioma/diagnóstico por imagem , Magnetismo , Nanopartículas , Tomografia , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Ratos , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único , Distribuição Tecidual
17.
Phys Med Biol ; 62(16): 6379-6396, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-28726679

RESUMO

The main applications of 188Re in radionuclide therapies include trans-arterial liver radioembolization and palliation of painful bone-metastases. In order to optimize 188Re therapies, the accurate determination of radiation dose delivered to tumors and organs at risk is required. Single photon emission computed tomography (SPECT) can be used to perform such dosimetry calculations. However, the accuracy of dosimetry estimates strongly depends on the accuracy of activity quantification in 188Re images. In this study, we performed a series of phantom experiments aiming to investigate the accuracy of activity quantification for 188Re SPECT using high-energy and medium-energy collimators. Objects of different shapes and sizes were scanned in Air, non-radioactive water (Cold-water) and water with activity (Hot-water). The ordered subset expectation maximization algorithm with clinically available corrections (CT-based attenuation, triple-energy window (TEW) scatter and resolution recovery was used). For high activities, the dead-time corrections were applied. The accuracy of activity quantification was evaluated using the ratio of the reconstructed activity in each object to this object's true activity. Each object's activity was determined with three segmentation methods: a 1% fixed threshold (for cold background), a 40% fixed threshold and a CT-based segmentation. Additionally, the activity recovered in the entire phantom, as well as the average activity concentration of the phantom background were compared to their true values. Finally, Monte-Carlo simulations of a commercial [Formula: see text]-camera were performed to investigate the accuracy of the TEW method. Good quantification accuracy (errors <10%) was achieved for the entire phantom, the hot-background activity concentration and for objects in cold background segmented with a 1% threshold. However, the accuracy of activity quantification for objects segmented with 40% threshold or CT-based methods decreased (errors >15%), mostly due to partial-volume effects. The Monte-Carlo simulations confirmed that TEW-scatter correction applied to 188Re, although practical, yields only approximate estimates of the true scatter.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Radioimunoterapia , Radioisótopos/uso terapêutico , Rênio/uso terapêutico , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Algoritmos , Humanos , Método de Monte Carlo , Radiometria , Espalhamento de Radiação
18.
PLoS One ; 12(1): e0169940, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28122038

RESUMO

Molds are filamentous fungi able to grow on a variety of surfaces, including constructed surfaces, food, rotten organic matter, and humid places. Mold growth is characterized by having an unpleasant odor in enclosed or non-ventilated places and a non-aesthetic appearance. They represent a health concern because of their ability to produce and release mycotoxins, compounds that are toxic to animals and humans. The aim of this study was to evaluate commercial nanoparticles (NPs) that can be used as an additive in coatings and paints to effectively control the growth of harmful molds. Four different NPs were screened for their antifungal activities against the mycotoxin producing mold strains Aspergillus flavus and A. fumigatus. The minimal inhibitory concentrations of the NPs were determined in broth media, whereas an agar diffusion test was used to assess the antimold activity on acrylic- and water-based paints. The cytotoxic activity and the inflammatory response of the NPs were also evaluated using the established human derived macrophage cell line THP-1. Results showed that a combination of mix metallic- and ZnO-NPs (50:10 µg/mL) effectively inhibited the fungal growth when exposed to fluorescent light. Neither cytotoxic effect nor inflammatory responses were recorded, suggesting that this combination can be safely used in humid or non-ventilated environments without any health concerns.


Assuntos
Aspergillus flavus/efeitos dos fármacos , Aspergillus fumigatus/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Pintura/microbiologia , Acrilatos , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/efeitos da radiação , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/efeitos da radiação , Linhagem Celular , Meios de Cultura , Citocinas/metabolismo , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Fluorescência , Fungicidas Industriais/toxicidade , Ouro/farmacologia , Ouro/toxicidade , Humanos , Inflamação/induzido quimicamente , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Testes de Sensibilidade Microbiana , Nanopartículas , Pintura/análise , Tamanho da Partícula , Prata/farmacologia , Prata/toxicidade , Água , Óxido de Zinco/farmacologia , Óxido de Zinco/toxicidade
19.
Contrast Media Mol Imaging ; 11(1): 77-88, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26268906

RESUMO

Macromolecular gadolinium (Gd)-based contrast agents are in development as blood pool markers for MRI. HPG-GdF is a 583 kDa hyperbranched polyglycerol doubly tagged with Gd and Alexa 647 nm dye, making it both MR and histologically visible. In this study we examined the location of HPG-GdF in whole-tumor xenograft sections matched to in vivo DCE-MR images of both HPG-GdF and Gadovist. Despite its large size, we have shown that HPG-GdF extravasates from some tumor vessels and accumulates over time, but does not distribute beyond a few cell diameters from vessels. Fractional plasma volume (fPV) and apparent permeability-surface area product (aPS) parameters were derived from the MR concentration-time curves of HPG-GdF. Non-viable necrotic tumor tissue was excluded from the analysis by applying a novel bolus arrival time (BAT) algorithm to all voxels. aPS derived from HPG-GdF was the only MR parameter to identify a difference in vascular function between HCT116 and HT29 colorectal tumors. This study is the first to relate low and high molecular weight contrast agents with matched whole-tumor histological sections. These detailed comparisons identified tumor regions that appear distinct from each other using the HPG-GdF biomarkers related to perfusion and vessel leakiness, while Gadovist-imaged parameter measures in the same regions were unable to detect variation in vascular function. We have established HPG-GdF as a biocompatible multi-modal high molecular weight contrast agent with application for examining vascular function in both MR and histological modalities.


Assuntos
Meios de Contraste/administração & dosagem , Glicerol/administração & dosagem , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Polímeros/administração & dosagem , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Gadolínio DTPA/administração & dosagem , Gadolínio DTPA/química , Glicerol/química , Humanos , Camundongos , Neovascularização Patológica/diagnóstico por imagem , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/química , Polímeros/química , Radiografia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Biomed Microdevices ; 17(3): 9967, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26009275

RESUMO

Hollow microneedles can overcome the stratum corneum (SC) barrier and deposit a compound directly into the viable epidermis or the dermis, unlike adhesive patches that rely on drug diffusion across the SC. The traditional one-dimensional methods used to study the diffusivity of drugs across the skin layers are not very accurate for hollow microneedles, since the ejection of compounds out of microneedle lumens resembles a point-source spreading in all directions and is highly dependent on injection depth. This paper presents a technique that is useful for studying drug injection using hollow microneedles at various depths below the SC. This technique uses confocal microscopy to image the distribution of a fluorescent compound in the skin after injection. The fluorescence distribution in the skin is observed over time and applied to a spherical Gaussian diffusion model for limited source diffusion to determine the diffusion coefficient of the compound in the skin. Applied to freshly excised pig skin, the diffusion coefficient for the anti-cancer drug doxorubicin was measured as 4.61 × 10(-9) cm(2)/s, while the diffusion coefficient in previously refrigerated or frozen pig skin was 1.31 × 10(-8) cm(2)/s and 4.21 × 10(-8) cm(2)/s, respectively. Our data suggests that skin storage conditions can substantially alter the diffusion of drugs. The use of refrigerated and, even more so, previously frozen skin should be avoided for quantitative transdermal drug delivery studies.


Assuntos
Doxorrubicina/química , Microinjeções/instrumentação , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Agulhas , Pele/química , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Difusão , Doxorrubicina/administração & dosagem , Humanos , Técnicas In Vitro , Injeções Subcutâneas , Imagem Molecular/métodos , Absorção Cutânea , Suínos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA