Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Leukemia ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575671

RESUMO

The NFKBIE gene, which encodes the NF-κB inhibitor IκBε, is mutated in 3-7% of patients with chronic lymphocytic leukemia (CLL). The most recurrent alteration is a 4-bp frameshift deletion associated with NF-κB activation in leukemic B cells and poor clinical outcome. To study the functional consequences of NFKBIE gene inactivation, both in vitro and in vivo, we engineered CLL B cells and CLL-prone mice to stably down-regulate NFKBIE expression and investigated its role in controlling NF-κB activity and disease expansion. We found that IκBε loss leads to NF-κB pathway activation and promotes both migration and proliferation of CLL cells in a dose-dependent manner. Importantly, NFKBIE inactivation was sufficient to induce a more rapid expansion of the CLL clone in lymphoid organs and contributed to the development of an aggressive disease with a shortened survival in both xenografts and genetically modified mice. IκBε deficiency was associated with an alteration of the MAPK pathway, also confirmed by RNA-sequencing in NFKBIE-mutated patient samples, and resistance to the BTK inhibitor ibrutinib. In summary, our work underscores the multimodal relevance of the NF-κB pathway in CLL and paves the way to translate these findings into novel therapeutic options.

2.
Sci Rep ; 12(1): 9838, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701472

RESUMO

Glioblastoma is a highly aggressive brain tumor with poor patient prognosis. Treatment outcomes remain limited, partly due to intratumoral heterogeneity and the invasive nature of the tumors. Glioblastoma cells invade and spread into the surrounding brain tissue, and even between hemispheres, thus hampering complete surgical resection. This invasive motility can arise through altered properties of the cytoskeleton. We hypothesize that cytoskeletal organization and dynamics can provide important clues to the different malignant states of glioblastoma. In this study, we investigated cytoskeletal organization in glioblastoma cells with different subtype expression profiles, and cytoskeletal dynamics upon subtype transitions. Analysis of the morphological, migratory, and invasive properties of glioblastoma cells identified cytoskeletal components as phenotypic markers that can serve as diagnostic or prognostic tools. We also show that the cytoskeletal function and malignant properties of glioblastoma cells shift during subtype transitions induced by altered expression of the neurodevelopmental transcription factor SOX2. The potential of SOX2 re-expression to reverse the mesenchymal subtype into a more proneural subtype might open up strategies for novel glioblastoma treatments.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patologia , Citoesqueleto/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Prognóstico
3.
Cancer Rep (Hoboken) ; 5(5): e1498, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34240826

RESUMO

BACKGROUND: The epithelial cell adhesion molecule (EpCAM) is a type I transmembrane and glycosylated protein, which is overexpressed in many neoplasms. However, EpCAM has no known ligand partners and the mechanisms by which it functions are not fully understood. AIM: This study was performed to discover novel partners of EpCAM, which may provide a better understanding of its functions. METHODS: The membrane fraction of the ERα+ noninvasive breast cancer cell line ZR-75-1 and MCF-7 was extracted and followed by co-immunoprecipitation of EpCAM using C-10, a mouse monoclonal antibody raised against amino acids 24-93 of the EpCAM molecule. As a negative control, MDA-MB-231 and Hs578T were used since they express a negligible amount of EpCAM and are known as EpCAM-/low ERα-/low invasive and tumorigenic breast cancer cell lines. RESULTS: Annexin A2 (ANXA2) was found to be selectively and differentially co-immunoprecipitated with EpCAM in the ERα+ breast cancer cells MCF-7 and ZR-75-1. ANXA2 is a multifunctional protein and known to act as a co-receptor for tissue plasminogen activator (tPA) on the surface of endothelial and cancer cells, thereby affecting fibrinolytic activity and neoangiogenesis as well as invasive and metastatic properties. In this study, the association between EpCAM and ANXA2 was found to affect the activity of tPA. CONCLUSION: This study concludes that ANXA2 co-localizes with EpCAM at the plasma membrane, and the co-localization may have functional implications. Data suggest that EpCAM supports ANXA2 to function as a co-receptor for the tPA, and that EpCAM has a regulatory function on the expression and subcellular localization of ANXA2.


Assuntos
Anexina A2 , Neoplasias da Mama , Animais , Anexina A2/metabolismo , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Camundongos , Ativador de Plasminogênio Tecidual/metabolismo
5.
Oncogene ; 40(32): 5066-5080, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34021259

RESUMO

Intratumoral heterogeneity is a characteristic of glioblastomas that contain an intermixture of cell populations displaying different glioblastoma subtype gene expression signatures. Proportions of these populations change during tumor evolution, but the occurrence and regulation of glioblastoma subtype transition is not well described. To identify regulators of glioblastoma subtypes we utilized a combination of in vitro experiments and in silico analyses, using experimentally generated as well as publicly available data. Through this combined approach SOX2 was identified to confer a proneural glioblastoma subtype gene expression signature. SFRP2 was subsequently identified as a SOX2-antagonist, able to induce a mesenchymal glioblastoma subtype signature. A subset of patient glioblastoma samples with high SFRP2 and low SOX2 expression was particularly enriched with mesenchymal subtype samples. Phenotypically, SFRP2 decreased tumor sphere formation, stemness as assessed by limiting dilution assay, and overall cell proliferation but increased cell motility, whereas SOX2 induced the opposite effects. Furthermore, an SFRP2/non-canonical-WNT/KLF4/PDGFR/phospho-AKT/SOX2 signaling axis was found to be involved in the mesenchymal transition. Analysis of human tumor tissue spatial gene expression patterns showed distinct expression of SFRP2- and SOX2-correlated genes in vascular and cellular areas, respectively. Finally, conditioned media from SFRP2 overexpressing cells increased CD206 on macrophages. Together, these findings present SFRP2 as a SOX2-antagonist with the capacity to induce a mesenchymal subtype transition in glioma cells located in vascular tumor areas, highlighting its role in glioblastoma tumor evolution and intratumoral heterogeneity.


Assuntos
Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/etiologia , Glioblastoma/metabolismo , Proteínas de Membrana/genética , Fatores de Transcrição SOXB1/genética , Proteínas de Transporte , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Glioblastoma/patologia , Humanos , Fator 4 Semelhante a Kruppel/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Proteínas de Membrana/metabolismo , Especificidade de Órgãos , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais
6.
Neurooncol Adv ; 2(1): vdaa061, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642713

RESUMO

BACKGROUND: Glioblastomas display a high level of intratumoral heterogeneity with regard to both genetic and histological features. Within single tumors, subclones have been shown to communicate with each other to affect overall tumor growth. The aim of this study was to broaden the understanding of interclonal communication in glioblastoma. METHODS: We have used the U-343 model, consisting of U-343 MG, U-343 MGa, U-343 MGa 31L, and U-343 MGa Cl2:6, a set of distinct glioblastoma cell lines that have been derived from the same tumor. We characterized these with regard to temozolomide sensitivity, protein secretome, gene expression, DNA copy number, and cancer cell phenotypic traits. Furthermore, we performed coculture and conditioned media-based experiments to model cell-to-cell signaling in a setting of intratumoral heterogeneity. RESULTS: Temozolomide treatment of a coculture composed of all 4 U-343 cell lines presents a tumor relapse model where the least sensitive population, U-343 MGa 31L, outlives the others. Interestingly, the U-343 cell lines were shown to have distinct gene expression signatures and phenotypes although they were derived from a single tumor. The DNA copy number analysis revealed both common and unique alterations, indicating the evolutionary relationship between the cells. Moreover, these cells were found to communicate and affect each other's proliferation, both via contact-dependent and -independent interactions, where NOTCH1, TGFBI, and ADAMTS1 signaling effects were involved, respectively. CONCLUSIONS: These results provide insight into how complex the signaling events may prove to be in a setting of intratumoral heterogeneity in glioblastoma and provide a map for future studies.

8.
Glia ; 68(2): 316-327, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31509308

RESUMO

Glioblastoma (GBM) is a deadly disease with a need for deeper understanding and new therapeutic approaches. The microenvironment of glioblastoma has previously been shown to guide glioblastoma progression. In this study, astrocytes were investigated with regard to their effect on glioblastoma proliferation through correlative analyses of clinical samples and experimental in vitro and in vivo studies. Co-culture techniques were used to investigate the GBM growth enhancing potential of astrocytes. Cell sorting and RNA sequencing were used to generate a GBM-associated astrocyte signature and to investigate astrocyte-induced GBM genes. A NOD scid GBM mouse model was used for in vivo studies. A gene signature reflecting GBM-activated astrocytes was associated with poor prognosis in the TCGA GBM dataset. Two genes, periostin and serglycin, induced in GBM cells upon exposure to astrocytes were expressed at higher levels in cases with high "astrocyte signature score". Astrocytes were shown to enhance glioblastoma cell growth in cell lines and in a patient-derived culture, in a manner dependent on cell-cell contact and involving increased cell proliferation. Furthermore, co-injection of astrocytes with glioblastoma cells reduced survival in an orthotopic GBM model in NOD scid mice. In conclusion, this study suggests that astrocytes contribute to glioblastoma growth and implies this crosstalk as a candidate target for novel therapies.


Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Movimento Celular/fisiologia , Glioblastoma/metabolismo , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Técnicas de Cocultura , Modelos Animais de Doenças , Glioblastoma/patologia , Glioma/metabolismo , Humanos , Camundongos Endogâmicos NOD
9.
Clin Cancer Res ; 25(12): 3702-3717, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30850359

RESUMO

PURPOSE: Fibroblasts expressing the orphan chemokine CXCL14 have been previously shown to associate with poor breast cancer prognosis and promote cancer growth. This study explores the mechanism underlying the poor survival associations of stromal CXCL14. EXPERIMENTAL DESIGN: Tumor cell epithelial-to-mesenchymal transition (EMT), invasion, and metastasis were studied in in vitro and in vivo models together with fibroblasts overexpressing CXCL14. An approach for CXCL14 receptor identification included loss-of-function studies followed by molecular and functional endpoints. The clinical relevance was further explored in publicly available gene expression datasets. RESULTS: CXCL14 fibroblasts stimulated breast cancer EMT, migration, and invasion in breast cancer cells and in a xenograft model. Furthermore, tumor cells primed by CXCL14 fibroblasts displayed enhanced lung colonization after tail-vein injection. By loss-of function experiments, the atypical G-protein-coupled receptor ACKR2 was identified to mediate CXCL14-stimulated responses. Downregulation of ACKR2, or CXCL14-induced NOS1, attenuated the pro-EMT and migratory capacity. CXCL14/ACKR2 expression correlated with EMT and survival in gene expression datasets. CONCLUSIONS: Collectively, the findings imply an autocrine fibroblast CXCL14/ACKR2 pathway as a clinically relevant stimulator of EMT, tumor cell invasion, and metastasis. The study also identifies ACKR2 as a novel mediator for CXCL14 function and thereby defines a pathway with drug target potential.See related commentary by Zhang et al., p. 3476.


Assuntos
Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Quimiocinas CXC/genética , Fibroblastos , Regulação Neoplásica da Expressão Gênica , Humanos
10.
Cancer Res ; 78(20): 5901-5916, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30135192

RESUMO

The homeodomain transcription factor PROX1 has been linked to several cancer types, including gliomas, but its functions remain to be further elucidated. Here we describe a functional role and the prognostic value of PROX1 in glioblastoma. Low expression of PROX1 correlated with poor overall survival and the mesenchymal glioblastoma subtype signature. The latter finding was recapitulated in vitro, where suppression or overexpression of PROX1 in glioma cell cultures transitioned cells to a mesenchymal or to a nonmesenchymal glioblastoma gene expression signature, respectively. PROX1 modulation affected proliferation rates that coincided with changes in protein levels of CCNA1 and CCNE1 as well as the cyclin inhibitors CDKN1A, CDKN1B, and CDKN1C. Overexpression of SOX2 increased PROX1 expression, but treatment with a CDK2 inhibitor subsequently decreased PROX1 expression, which was paralleled by decreased SOX2 levels. The THRAP3 protein was a novel binding partner for PROX1, and suppression of THRAP3 increased both transcript and protein levels of PROX1. Together, these findings highlight the prognostic value of PROX1 and its role as a regulator of glioblastoma gene expression subtypes, intratumoral heterogeneity, proliferation, and cell-cycle control.Significance: These findings demonstrate the role and prognostic value of PROX1 in glioblastomas; low PROX1 levels correlate with a mesenchymal gene expression subtype and shorter survival in glioblastoma tumors. Cancer Res; 78(20); 5901-16. ©2018 AACR.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Intervalo Livre de Doença , Glioma/metabolismo , Humanos , Espectrometria de Massas , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Prognóstico , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Resultado do Tratamento
11.
Oncotarget ; 8(49): 84671-84684, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29156675

RESUMO

Glioblastoma multiforme (GBM) is an aggressive form of brain cancer with poor prognosis. Cancer cells are characterized by a specific redox environment that adjusts metabolism to its specific needs and allows the tumor to grow and metastasize. As a consequence, cancer cells and especially GBM cells suffer from elevated oxidative pressure which requires antioxidant-defense and other sanitation enzymes to be upregulated. MTH1, which degrades oxidized nucleotides, is one of these defense enzymes and represents a promising cancer target. We found MTH1 expression levels elevated and correlated with GBM aggressiveness and discovered that siRNA knock-down or inhibition of MTH1 with small molecules efficiently reduced viability of patient-derived GBM cultures. The effect of MTH1 loss on GBM viability was likely mediated through incorporation of oxidized nucleotides and subsequent DNA damage. We revealed that MTH1 inhibition targets GBM independent of aggressiveness as well as potently kills putative GBM stem cells in vitro. We used an orthotopic zebrafish model to confirm our results in vivo and light-sheet microscopy to follow the effect of MTH1 inhibition in GBM in real time. In conclusion, MTH1 represents a promising target for GBM therapy and MTH1 inhibitors may also be effective in patients that suffer from recurring disease.

12.
Oncotarget ; 7(45): 72431-72442, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27626492

RESUMO

PROX1 is a transcription factor with an essential role in embryonic development and determination of cell fate. In addition, PROX1 has been ascribed suppressive as well as oncogenic roles in several human cancers, including brain tumors. In this study we explored the correlation between PROX1 expression and patient survival in high-grade astrocytomas. For this purpose, we analyzed protein expression in tissue microarrays of tumor samples stratified by patient age and IDH mutation status. We initially screened 86 unselected high-grade astrocytomas, followed by 174 IDH1-R132H1 immunonegative glioblastomas derived from patients aged 60 years and older enrolled in the Nordic phase III trial of elderly patients with newly diagnosed glioblastoma. Representing the younger population of glioblastomas, we studied 80 IDH-wildtype glioblastomas from patients aged 18-60 years. There was no correlation between PROX1 protein and survival for patients with primary glioblastomas included in these cohorts. In contrast, high expression of PROX1 protein predicted shorter survival in the group of patients with IDH-mutant anaplastic astrocytomas and secondary glioblastomas. The prognostic impact of PROX1 in IDH-mutant 1p19q non-codeleted high-grade astrocytomas, as well as the negative findings in primary glioblastomas, was corroborated by gene expression data extracted from the Cancer Genome Atlas. We conclude that PROX1 is a new prognostic biomarker for 1p19q non-codeleted high-grade astrocytomas that have progressed from pre-existing low-grade tumors and harbor IDH mutations.


Assuntos
Biomarcadores Tumorais/metabolismo , Glioblastoma/metabolismo , Proteínas de Homeodomínio/metabolismo , Isocitrato Desidrogenase/genética , Proteínas Supressoras de Tumor/metabolismo , Fatores Etários , Idoso , Astrocitoma/genética , Astrocitoma/metabolismo , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Estudos de Coortes , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Isocitrato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Gradação de Tumores , Prognóstico
13.
Cancer Discov ; 3(9): 1044-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23764425

RESUMO

UNLABELLED: 3q26 is frequently amplified in several cancer types with a common amplified region containing 20 genes. To identify cancer driver genes in this region, we interrogated the function of each of these genes by loss- and gain-of-function genetic screens. Specifically, we found that TLOC1 (SEC62) was selectively required for the proliferation of cell lines with 3q26 amplification. Increased TLOC1 expression induced anchorage-independent growth, and a second 3q26 gene, SKIL (SNON), facilitated cell invasion in immortalized human mammary epithelial cells. Expression of both TLOC1 and SKIL induced subcutaneous tumor growth. Proteomic studies showed that TLOC1 binds to DDX3X, which is essential for TLOC1-induced transformation and affected protein translation. SKIL induced invasion through upregulation of SLUG (SNAI2) expression. Together, these studies identify TLOC1 and SKIL as driver genes at 3q26 and more broadly suggest that cooperating genes may be coamplified in other regions with somatic copy number gain. SIGNIFICANCE: These studies identify TLOC1 and SKIL as driver genes in 3q26. These observations provide evidence that regions of somatic copy number gain may harbor cooperating genes of different but complementary functions.


Assuntos
Cromossomos Humanos Par 3/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana Transportadoras/genética , Invasividade Neoplásica/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas/genética , Neoplasias da Mama/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , RNA Helicases DEAD-box/metabolismo , Variações do Número de Cópias de DNA/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Amplificação de Genes/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/genética , Glândulas Mamárias Humanas/citologia , Proteínas de Membrana Transportadoras/metabolismo , Neoplasias Ovarianas/genética , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Fatores de Transcrição da Família Snail , Fatores de Transcrição/biossíntese
14.
Neuro Oncol ; 13(11): 1178-91, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21940738

RESUMO

Putative cancer stem cells have been identified in glioblastomas and are associated with radio- and chemo-resistance. Further knowledge about these cells is thus highly warranted for the development of better glioblastoma therapies. Gene expression analyses of 11 high-grade glioma cultures identified 2 subsets, designated type A and type B cultures. The type A cultures displayed high expression of CXCR4, SOX2, EAAT1, and GFAP and low expression of CNP, PDGFRB, CXCL12, and extracellular matrix proteins. Clinical significance of the 2 types was indicated by the expression of type A- and type B-defining genes in different clinical glioblastoma samples. Classification of glioblastomas with type A- and type B-defining genes generated 2 groups of tumors composed predominantly of the classical, neural, and/or proneural subsets and the mesenchymal subset, respectively. Furthermore, tumors with EGFR mutations were enriched in the group of type A samples. Type A cultures possessed a higher capacity to form xenograft tumors and neurospheres and displayed low or no sensitivity to monotreatment with PDGF- and IGF-1-receptor inhibitors but were efficiently growth inhibited by combination treatment with low doses of these 2 inhibitors. Furthermore, siRNA-induced downregulation of SOX2 reduced sphere formation of type A cultures, decreased expression of type A-defining genes, and conferred sensitivity to monotreatment with PDGF- and IGF-1-receptor inhibitors. The present study thus describes a tumor- and neurosphere-forming SOX2-dependent subset of glioblastoma cultures characterized by a gene expression signature similar to that of the recently described classical, proneural, and/or neural subsets of glioblastoma. The findings that resistance to PDGF- and IGF-1-receptor inhibitors is related to SOX2 expression and can be overcome by combination treatment should be considered in ongoing efforts to develop novel stem cell-targeting therapies.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Glioblastoma/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/farmacologia , Fatores de Transcrição SOXB1/genética , Animais , Western Blotting , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Imunofluorescência , Glioblastoma/classificação , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Camundongos SCID , Análise de Sequência com Séries de Oligonucleotídeos , RNA Interferente Pequeno/genética , Fatores de Transcrição SOXB1/antagonistas & inibidores , Fatores de Transcrição SOXB1/metabolismo , Esferoides Celulares/patologia , Células Tumorais Cultivadas
15.
Anticancer Drugs ; 21(8): 759-65, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20613486

RESUMO

Combined treatment with tyrosine kinase inhibitors (TKi) and additional drugs is emerging as a promising strategy for cancer therapy. TKi and histone-deacetylase inhibitors (HDI) are two classes of anti-tumor agents with distant mechanisms of action. We have designed and synthesized chimeric compounds, which comprise structural elements of the TKi imatinib, and of prototypical HDI compounds. These compounds retain TKi activity similar to imatinib, exemplified by the inhibition of the platelet-derived growth factor receptor, and c-Kit kinase in intact cells. In addition, the chimeric compounds have in vitro and cellular HDI activity, and potently inhibit growth of cancer cell lines, including that of imatinib-resistant cell lines. Chimeric molecules with combined TKi and HDI activity may simplify combination treatment and be applicable to overcome clinical resistance to TKi single-agent therapy.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Antineoplásicos/síntese química , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Inibidores de Histona Desacetilases/síntese química , Humanos , Mesilato de Imatinib , Piperazinas/uso terapêutico , Inibidores de Proteínas Quinases/síntese química , Pirimidinas/uso terapêutico , Receptores do Fator de Crescimento Derivado de Plaquetas/efeitos dos fármacos , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo
16.
Neuro Oncol ; 12(9): 967-75, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20378689

RESUMO

IGF-1 receptor signaling contributes to the growth of many solid tumors, including glioblastoma. This study analyzed the sensitivity of 8 glioblastoma cultures to the IGF-1 receptor inhibitor NVP-AEW541. Growth reduction, caused by a combination of antiproliferative and proapoptotic effects, varied between 20% and 100%. Growth-inhibitory effects of IGF-1 receptor siRNA were also demonstrated in 2 of the cultures. Activating mutations in PIK3CA were found in 2 cultures, and 2 other cultures displayed ligand-independent Akt phosphorylation. Growth inhibition was significantly reduced in cultures with PIK3CA mutations or ligand-independent Akt phosphorylation. PTEN siRNA experiments supported the notion that the status of the PI3K/PTEN/Akt pathway is involved in determining NVP-AEW541 sensitivity. Combination treatments with either PI3 kinase or mTOR inhibitors together with NVP-AEW541 were performed. These experiments demonstrated the effects of NVP-AEW541 in cells not responding to mono-treatment with the IGF-1 receptor inhibitor, when used together with either of the 2 other inhibitors. Together, the studies support continued clinical development of IGF-1 receptor antagonists for glioblastomas and identify links between PI3K/PTEN/Akt status and sensitivity to mono-treatment with NVP-AEW541. Furthermore, the studies suggest that NVP-AEW541 is also active together with PI3 kinase and mTOR inhibitors in cultures with a dysregulated PI3K/PTEN/Akt pathway. These studies should assist in future clinical development of IGF-1 receptor antagonists for glioblastoma and other tumors.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glioma/metabolismo , Pirimidinas/farmacologia , Pirróis/farmacologia , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Immunoblotting , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Receptor IGF Tipo 1/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Neuro Oncol ; 10(1): 2-9, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18003890

RESUMO

Grade II gliomas are morphologically and clinically heterogeneous tumors for which histopathological typing remains the major tool for clinical classification. To what extent the major histological subtypes - astrocytomas, oligodendrogliomas, and oligoastrocytomas - constitute true biological entities is largely unresolved. Furthermore, morphological classification is often ambiguous and would be facilitated by specific subtype markers. In this study, 23 grade II gliomas were expression-profiled and subjected to hierarchical clustering. All six oligodendrogliomas were grouped together in one of two major clusters; a significant correlation was thus observed between gene expression and histopathological subtype. Supervised analyses were performed to identify genes differentiating oligodendrogliomas from other grade II tumors. In a leave-one-out test using 10 features for classification, 20 out of 23 tumors were correctly classified. Among the most differentially expressed genes was rPTPbeta/zeta. The expression of the rPTP beta/zeta protein in oligodendrogliomas and astrocytomas was further validated by immunohistochemistry in an independent set of tumors. All 11 oligodendrogliomas of this set displayed strong staining. In contrast, neoplastic astrocytes were mostly negative for rPTPbeta/zeta staining. In summary, this study demonstrates a correlation between gene expression pattern and histological subtype in grade II gliomas. Furthermore, the results from the immunohistochemical analyses of rPTPbeta/zeta expression should prompt further evaluation of this protein as a novel oligodendroglioma marker.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias Encefálicas/genética , Glioma/genética , Oligodendroglioma/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Adulto , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Diagnóstico Diferencial , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Oligodendroglioma/metabolismo , Oligodendroglioma/patologia , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA