Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 103: 105124, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701619

RESUMO

BACKGROUND: PolyQ diseases are autosomal dominant neurodegenerative disorders caused by the expansion of CAG repeats. While of slow progression, these diseases are ultimately fatal and lack effective therapies. METHODS: A high-throughput chemical screen was conducted to identify drugs that lower the toxicity of a protein containing the first exon of Huntington's disease (HD) protein huntingtin (HTT) harbouring 94 glutamines (Htt-Q94). Candidate drugs were tested in a wide range of in vitro and in vivo models of polyQ toxicity. FINDINGS: The chemical screen identified the anti-leprosy drug clofazimine as a hit, which was subsequently validated in several in vitro models. Computational analyses of transcriptional signatures revealed that the effect of clofazimine was due to the stimulation of mitochondrial biogenesis by peroxisome proliferator-activated receptor gamma (PPARγ). In agreement with this, clofazimine rescued mitochondrial dysfunction triggered by Htt-Q94 expression. Importantly, clofazimine also limited polyQ toxicity in developing zebrafish and neuron-specific worm models of polyQ disease. INTERPRETATION: Our results support the potential of repurposing the antimicrobial drug clofazimine for the treatment of polyQ diseases. FUNDING: A full list of funding sources can be found in the acknowledgments section.


Assuntos
Clofazimina , Modelos Animais de Doenças , Proteína Huntingtina , Hansenostáticos , PPAR gama , Peptídeos , Peixe-Zebra , Clofazimina/farmacologia , PPAR gama/metabolismo , PPAR gama/genética , Animais , Humanos , Peptídeos/farmacologia , Hansenostáticos/farmacologia , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo
2.
FEBS Open Bio ; 12(10): 1896-1908, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36062323

RESUMO

The tetracycline repressor (tetR)-regulated system is a widely used tool to specifically control gene expression in mammalian cells. Based on this system, we generated a human osteosarcoma cell line, which allows for the inducible expression of an EGFP fusion of the TAR DNA-binding protein 43 (TDP-43), which has been linked to neurodegenerative diseases. Consistent with previous findings, TDP-43 overexpression led to the accumulation of aggregates and limited the viability of U2OS. Using this inducible system, we conducted a chemical screen with a library that included FDA-approved drugs. While the primary screen identified several compounds that prevented TDP-43 toxicity, further experiments revealed that these chemicals abrogated the doxycycline-dependent TDP-43 expression. This antagonistic effect was observed with both doxycycline and tetracycline, and in several Tet-On cell lines expressing different genes, confirming the general effect of these compounds as inhibitors of the tetR system. Using the same cell line, a genome-wide CRISPR/Cas9 screen identified epigenetic regulators such as the G9a methyltransferase and TRIM28 as potential modifiers of TDP-43 toxicity. Yet again, further experiments revealed that G9a inhibition or TRIM28 loss prevented doxycycline-dependent expression of TDP-43. In summary, we have identified new chemical and genetic regulators of the tetR system, thereby raising awareness of the limitations of this approach to conduct chemical or genetic screening in mammalian cells.


Assuntos
Doxiciclina , Proteínas Repressoras , Antibacterianos , Proteínas de Ligação a DNA/genética , Doxiciclina/farmacologia , Expressão Gênica , Testes Genéticos , Humanos , Metiltransferases/genética , Proteínas Repressoras/metabolismo , Tetraciclina/farmacologia , Fatores de Transcrição/genética
3.
Nat Cancer ; 3(2): 156-172, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35228749

RESUMO

The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors.


Assuntos
Aminoidrolases , Leucemia Mieloide Aguda , Aminoidrolases/genética , Humanos , Hidrolases , Leucemia Mieloide Aguda/tratamento farmacológico , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Enzimas Multifuncionais/genética , Timidina
4.
Mol Oncol ; 16(1): 148-165, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34392603

RESUMO

Among others, expression levels of programmed cell death 1 ligand 1 (PD-L1) have been explored as biomarkers of the response to immune checkpoint inhibitors in cancer therapy. Here, we present the results of a chemical screen that interrogated how medically approved drugs influence PD-L1 expression. As expected, corticosteroids and inhibitors of Janus kinases were among the top PD-L1 downregulators. In addition, we identified that PD-L1 expression is induced by antiestrogenic compounds. Transcriptomic analyses indicate that chronic estrogen receptor alpha (ERα) inhibition triggers a broad immunosuppressive program in ER-positive breast cancer cells, which is subsequent to their growth arrest and involves the activation of multiple immune checkpoints together with the silencing of the antigen-presenting machinery. Accordingly, estrogen-deprived MCF7 cells are resistant to T-cell-mediated cell killing, in a manner that is independent of PD-L1, but which is reverted by estradiol. Our study reveals that while antiestrogen therapies efficiently limit the growth of ER-positive breast cancer cells, they concomitantly trigger a transcriptional program that favors their immune evasion.


Assuntos
Antígeno B7-H1 , Neoplasias da Mama , Antígeno B7-H1/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Antagonistas de Estrogênios , Estrogênios/farmacologia , Feminino , Humanos , Fenótipo
5.
PLoS Biol ; 19(5): e3001263, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34033645

RESUMO

We here conducted an image-based chemical screen to evaluate how medically approved drugs, as well as drugs that are currently under development, influence overall translation levels. None of the compounds up-regulated translation, which could be due to the screen being performed in cancer cells grown in full media where translation is already present at very high levels. Regarding translation down-regulators, and consistent with current knowledge, inhibitors of the mechanistic target of rapamycin (mTOR) signaling pathway were the most represented class. In addition, we identified that inhibitors of sphingosine kinases (SPHKs) also reduce mRNA translation levels independently of mTOR. Mechanistically, this is explained by an effect of the compounds on the membranes of the endoplasmic reticulum (ER), which activates the integrated stress response (ISR) and contributes to the toxicity of SPHK inhibitors. Surprisingly, the toxicity and activation of the ISR triggered by 2 independent SPHK inhibitors, SKI-II and ABC294640, the latter in clinical trials, are also observed in cells lacking SPHK1 and SPHK2. In summary, our study provides a useful resource on the effects of medically used drugs on translation, identified compounds capable of reducing translation independently of mTOR and has revealed that the cytotoxic properties of SPHK inhibitors being developed as anticancer agents are independent of SPHKs.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Biossíntese de Proteínas/fisiologia , Animais , Linhagem Celular , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Lisofosfolipídeos/metabolismo , Espectrometria de Massas/métodos , Estrutura Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Esfingosina/metabolismo
6.
Orphanet J Rare Dis ; 15(1): 170, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32605631

RESUMO

BACKGROUND: Fanconi anemia is a rare disease clinically characterized by malformations, bone marrow failure and an increased risk of solid tumors and hematologic malignancies. The only therapies available are hematopoietic stem cell transplantation for bone marrow failure or leukemia, and surgical resection for solid tumors. Therefore, there is still an urgent need for new therapeutic options. With this aim, we developed a novel high-content cell-based screening assay to identify drugs with therapeutic potential in FA. RESULTS: A TALEN-mediated FANCA-deficient U2OS cell line was stably transfected with YFP-FANCD2 fusion protein. These cells were unable to form fluorescent foci or to monoubiquitinate endogenous or exogenous FANCD2 upon DNA damage and were more sensitive to mitomycin C when compared to the parental wild type counterpart. FANCA correction by retroviral infection restored the cell line's ability to form FANCD2 foci and ubiquitinate FANCD2. The feasibility of this cell-based system was interrogated in a high content screening of 3802 compounds, including a Prestwick library of 1200 FDA-approved drugs. The potential hits identified were then individually tested for their ability to rescue FANCD2 foci and monoubiquitination, and chromosomal stability in the absence of FANCA. CONCLUSIONS: While, unfortunately, none of the compounds tested were able to restore cellular FANCA-deficiency, our study shows the potential capacity to screen large compound libraries in the context of Fanconi anemia therapeutics in an optimized and cost-effective platform.


Assuntos
Anemia de Fanconi , Dano ao DNA , Avaliação Pré-Clínica de Medicamentos , Anemia de Fanconi/tratamento farmacológico , Anemia de Fanconi/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Humanos
7.
Cell Rep ; 32(2): 107897, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668248

RESUMO

Glioblastoma (GBM) is a malignant brain tumor with few therapeutic options. The disease presents with a complex spectrum of genomic aberrations, but the pharmacological consequences of these aberrations are partly unknown. Here, we report an integrated pharmacogenomic analysis of 100 patient-derived GBM cell cultures from the human glioma cell culture (HGCC) cohort. Exploring 1,544 drugs, we find that GBM has two main pharmacological subgroups, marked by differential response to proteasome inhibitors and mutually exclusive aberrations in TP53 and CDKN2A/B. We confirm this trend in cell and in xenotransplantation models, and identify both Bcl-2 family inhibitors and p53 activators as potentiators of proteasome inhibitors in GBM cells. We can further predict the responses of individual cell cultures to several existing drug classes, presenting opportunities for drug repurposing and design of stratified trials. Our functionally profiled biobank provides a valuable resource for the discovery of new treatments for GBM.


Assuntos
Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Terapia de Alvo Molecular , Medicina de Precisão , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Bortezomib/farmacologia , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Heterogeneidade Genética , Genoma Humano , Glioblastoma/genética , Humanos , Camundongos Endogâmicos BALB C , Mutação/genética , Inibidores de Proteassoma/farmacologia , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
8.
Cell Chem Biol ; 26(2): 235-243.e5, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30527999

RESUMO

The expansion of GGGGCC repeats within the first intron of C9ORF72 constitutes the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Through repeat-associated non-ATG translation, these expansions are translated into dipeptide repeats (DPRs), some of which accumulate at nucleoli and lead to cell death. We here performed a chemical screen to identify compounds reducing the toxicity of ALS-related poly(PR) peptides. Our screening identified sodium phenylbutyrate, currently in clinical trials, and BET Bromodomain inhibitors as modifiers of poly(PR) toxicity in cell lines and developing zebrafish embryos. Mechanistically, we show that BET Bromodomain inhibitors rescue the nucleolar stress induced by poly(PR) or actinomycin D, alleviating the effects of the DPR in nucleolus-related functions such as mRNA splicing or translation. Our work suggests that BET Bromodomain inhibitors might have beneficial effects in diseases linked to nucleolar stress such as ALS/FTD.


Assuntos
Apoptose/efeitos dos fármacos , Proteína C9orf72/química , Peptídeos/toxicidade , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Linhagem Celular Tumoral , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Expansão das Repetições de DNA , Dactinomicina/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Peptídeos/síntese química , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Peixe-Zebra/crescimento & desenvolvimento
9.
Nat Commun ; 8(1): 1541, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29142246

RESUMO

The NUDIX enzymes are involved in cellular metabolism and homeostasis, as well as mRNA processing. Although highly conserved throughout all organisms, their biological roles and biochemical redundancies remain largely unclear. To address this, we globally resolve their individual properties and inter-relationships. We purify 18 of the human NUDIX proteins and screen 52 substrates, providing a substrate redundancy map. Using crystal structures, we generate sequence alignment analyses revealing four major structural classes. To a certain extent, their substrate preference redundancies correlate with structural classes, thus linking structure and activity relationships. To elucidate interdependence among the NUDIX hydrolases, we pairwise deplete them generating an epistatic interaction map, evaluate cell cycle perturbations upon knockdown in normal and cancer cells, and analyse their protein and mRNA expression in normal and cancer tissues. Using a novel FUSION algorithm, we integrate all data creating a comprehensive NUDIX enzyme profile map, which will prove fundamental to understanding their biological functionality.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Família Multigênica , Pirofosfatases/genética , Células A549 , Linhagem Celular , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Filogenia , Pirofosfatases/classificação , Pirofosfatases/metabolismo , Interferência de RNA , Especificidade por Substrato , Nudix Hidrolases
11.
J Med Chem ; 60(5): 2148-2154, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28145708

RESUMO

The dCTP pyrophosphatase 1 (dCTPase) is involved in the regulation of the cellular dNTP pool and has been linked to cancer progression. Here we report on the discovery of a series of 3,6-disubstituted triazolothiadiazoles as potent dCTPase inhibitors. Compounds 16 and 18 display good correlation between enzymatic inhibition and target engagement, together with efficacy in a cellular synergy model, deeming them as a promising starting point for hit-to-lead development.


Assuntos
Inibidores Enzimáticos/farmacologia , Pirofosfatases/antagonistas & inibidores , Tiadiazóis/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Simulação de Acoplamento Molecular
12.
Cancer Res ; 77(4): 937-948, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27899380

RESUMO

To sustain their proliferation, cancer cells become dependent on one-carbon metabolism to support purine and thymidylate synthesis. Indeed, one of the most highly upregulated enzymes during neoplastic transformation is MTHFD2, a mitochondrial methylenetetrahydrofolate dehydrogenase and cyclohydrolase involved in one-carbon metabolism. Because MTHFD2 is expressed normally only during embryonic development, it offers a disease-selective therapeutic target for eradicating cancer cells while sparing healthy cells. Here we report the synthesis and preclinical characterization of the first inhibitor of human MTHFD2. We also disclose the first crystal structure of MTHFD2 in complex with a substrate-based inhibitor and the enzyme cofactors NAD+ and inorganic phosphate. Our work provides a rationale for continued development of a structural framework for the generation of potent and selective MTHFD2 inhibitors for cancer treatment. Cancer Res; 77(4); 937-48. ©2017 AACR.


Assuntos
Inibidores Enzimáticos/química , Meteniltetra-Hidrofolato Cicloidrolase/química , Metilenotetra-Hidrofolato Desidrogenase (NADP)/química , Mitocôndrias/enzimologia , Sítios de Ligação , Cristalização , Ácido Fólico/análogos & derivados , Ácido Fólico/metabolismo , Humanos , Leucovorina/análogos & derivados , Leucovorina/metabolismo , Meteniltetra-Hidrofolato Cicloidrolase/antagonistas & inibidores , Metilenotetra-Hidrofolato Desidrogenase (NADP)/antagonistas & inibidores , Antígenos de Histocompatibilidade Menor , NAD/metabolismo , Multimerização Proteica
13.
Oncotarget ; 7(45): 73200-73215, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27689322

RESUMO

Glioblastoma multiforme (GBM, astrocytoma grade IV) is the most common malignant primary brain tumor in adults. Addressing the shortage of effective treatment options for this cancer, we explored repurposing of existing drugs into combinations with potent activity against GBM cells. We report that the phytoalexin pterostilbene is a potentiator of two drugs with previously reported anti-GBM activity, the EGFR inhibitor gefitinib and the antidepressant sertraline. Combinations of either of these two compounds with pterostilbene suppress cell growth, viability, sphere formation and inhibit migration in tumor GBM cell (GC) cultures. The potentiating effect of pterostilbene was observed to a varying degree across a panel of 41 patient-derived GCs, and correlated in a case specific manner with the presence of missense mutation of EGFR and PIK3CA and a focal deletion of the chromosomal region 1p32. We identify pterostilbene-induced cell cycle arrest, synergistic inhibition of MAPK activity and induction of Thioredoxin interacting protein (TXNIP) as possible mechanisms behind pterostilbene's effect. Our results highlight a nontoxic stilbenoid compound as a modulator of anticancer drug response, and indicate that pterostilbene might be used to modulate two anticancer compounds in well-defined sets of GBM patients.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Estilbenos/farmacologia , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Fitogênicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Variações do Número de Cópias de DNA , Sinergismo Farmacológico , Feminino , Gefitinibe , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Estilbenos/uso terapêutico , Transcriptoma
14.
Nature ; 508(7495): 215-21, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24695224

RESUMO

Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.


Assuntos
Enzimas Reparadoras do DNA/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Nucleotídeos/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Animais , Domínio Catalítico , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalização , Dano ao DNA , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Nucleotídeos de Desoxiguanina/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Masculino , Camundongos , Modelos Moleculares , Conformação Molecular , Terapia de Alvo Molecular , Neoplasias/patologia , Oxirredução/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirofosfatases/antagonistas & inibidores , Reprodutibilidade dos Testes , Ensaios Antitumorais Modelo de Xenoenxerto , Nudix Hidrolases
15.
Neuro Oncol ; 15(11): 1469-78, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24101737

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most aggressive brain tumor in adults, and despite state-of-the-art treatment, survival remains poor and novel therapeutics are sorely needed. The aim of the present study was to identify new synergistic drug pairs for GBM. In addition, we aimed to explore differences in drug-drug interactions across multiple GBM-derived cell cultures and predict such differences by use of transcriptional biomarkers. METHODS: We performed a screen in which we quantified drug-drug interactions for 465 drug pairs in each of the 5 GBM cell lines U87MG, U343MG, U373MG, A172, and T98G. Selected interactions were further tested using isobole-based analysis and validated in 5 glioma-initiating cell cultures. Furthermore, drug interactions were predicted using microarray-based transcriptional profiling in combination with statistical modeling. RESULTS: Of the 5 × 465 drug pairs, we could define a subset of drug pairs with strong interaction in both standard cell lines and glioma-initiating cell cultures. In particular, a subset of pairs involving the pharmaceutical compounds rimcazole, sertraline, pterostilbene, and gefitinib showed a strong interaction in a majority of the cell cultures tested. Statistical modeling of microarray and interaction data using sparse canonical correlation analysis revealed several predictive biomarkers, which we propose could be of importance in regulating drug pair responses. CONCLUSION: We identify novel candidate drug pairs for GBM and suggest possibilities to prospectively use transcriptional biomarkers to predict drug interactions in individual cases.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Glioblastoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carbazóis/uso terapêutico , Linhagem Celular Tumoral , Interações Medicamentosas , Gefitinibe , Humanos , Quinazolinas/uso terapêutico , Sertralina/uso terapêutico , Estilbenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA