Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3683, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344476

RESUMO

Cyclic di-AMP is the only known essential second messenger in bacteria and archaea, regulating different proteins indispensable for numerous physiological processes. In particular, it controls various potassium and osmolyte transporters involved in osmoregulation. In Bacillus subtilis, the K+/H+ symporter KimA of the KUP family is inactivated by c-di-AMP. KimA sustains survival at potassium limitation at low external pH by mediating potassium ion uptake. However, at elevated intracellular K+ concentrations, further K+ accumulation would be toxic. In this study, we reveal the molecular basis of how c-di-AMP binding inhibits KimA. We report cryo-EM structures of KimA with bound c-di-AMP in detergent solution and reconstituted in amphipols. By combining structural data with functional assays and molecular dynamics simulations we reveal how c-di-AMP modulates transport. We show that an intracellular loop in the transmembrane domain interacts with c-di-AMP bound to the adjacent cytosolic domain. This reduces the mobility of transmembrane helices at the cytosolic side of the K+ binding site and therefore traps KimA in an inward-occluded conformation.


Assuntos
AMP Cíclico , Prótons , Proteínas de Bactérias/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Potássio/metabolismo , Fosfatos de Dinucleosídeos/metabolismo
2.
Elife ; 112022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36255052

RESUMO

KdpFABC is a high-affinity prokaryotic K+ uptake system that forms a functional chimera between a channel-like subunit (KdpA) and a P-type ATPase (KdpB). At high K+ levels, KdpFABC needs to be inhibited to prevent excessive K+ accumulation to the point of toxicity. This is achieved by a phosphorylation of the serine residue in the TGES162 motif in the A domain of the pump subunit KdpB (KdpBS162-P). Here, we explore the structural basis of inhibition by KdpBS162 phosphorylation by determining the conformational landscape of KdpFABC under inhibiting and non-inhibiting conditions. Under turnover conditions, we identified a new inhibited KdpFABC state that we termed E1P tight, which is not part of the canonical Post-Albers transport cycle of P-type ATPases. It likely represents the biochemically described stalled E1P state adopted by KdpFABC upon KdpBS162 phosphorylation. The E1P tight state exhibits a compact fold of the three cytoplasmic domains and is likely adopted when the transition from high-energy E1P states to E2P states is unsuccessful. This study represents a structural characterization of a biologically relevant off-cycle state in the P-type ATPase family and supports the emerging discussion of P-type ATPase regulation by such states.


Assuntos
Proteínas de Transporte de Cátions , Proteínas de Escherichia coli , ATPases do Tipo-P , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Transporte de Cátions/química , Potássio/metabolismo
3.
Nat Commun ; 12(1): 5098, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429416

RESUMO

KdpFABC, a high-affinity K+ pump, combines the ion channel KdpA and the P-type ATPase KdpB to secure survival at K+ limitation. Here, we apply a combination of cryo-EM, biochemical assays, and MD simulations to illuminate the mechanisms underlying transport and the coupling to ATP hydrolysis. We show that ions are transported via an intersubunit tunnel through KdpA and KdpB. At the subunit interface, the tunnel is constricted by a phenylalanine, which, by polarized cation-π stacking, controls K+ entry into the canonical substrate binding site (CBS) of KdpB. Within the CBS, ATPase coupling is mediated by the charge distribution between an aspartate and a lysine. Interestingly, individual elements of the ion translocation mechanism of KdpFABC identified here are conserved among a wide variety of P-type ATPases from different families. This leads us to the hypothesis that KdpB might represent an early descendant of a common ancestor of cation pumps.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Transporte de Íons/fisiologia , Ácido Aspártico/metabolismo , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lisina/metabolismo , Simulação de Dinâmica Molecular , Mutação , Fenilalanina , Potássio/metabolismo , Subunidades Proteicas , ATPase Trocadora de Sódio-Potássio
4.
Methods Mol Biol ; 2127: 93-103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32112317

RESUMO

When purifying a membrane protein, finding a detergent for solubilization is one of the first steps to master. Ideally, only little time is invested to identify the best-suited detergent, which on the one hand would solubilize large amounts of the target protein but on the other hand would sustain the protein's activity. Here we describe the solubilization screen and subsequent activity assay we have optimized for the bacterial P-type ATPase KdpFABC. In just 2 days, more than 70 detergents were tested for their solubilization potential. Afterwards, a smaller selection of the successful detergents was assayed for their ability to retain the activity of the membrane protein complex.


Assuntos
Fracionamento Químico/métodos , Detergentes/química , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Controle de Qualidade , Adenosina Trifosfatases/química , Adenosina Trifosfatases/isolamento & purificação , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/isolamento & purificação , Proteínas de Transporte de Cátions/metabolismo , Detergentes/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ensaios Enzimáticos/métodos , Ensaios Enzimáticos/normas , Estabilidade Enzimática/efeitos dos fármacos , Escherichia coli/química , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteínas de Membrana Transportadoras/metabolismo , Subunidades Proteicas , Solubilidade/efeitos dos fármacos , Tensoativos/química , Tensoativos/farmacologia
5.
Biol Chem ; 400(10): 1303-1322, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31361596

RESUMO

Potassium channels play a crucial role in the physiology of all living organisms. They maintain the membrane potential and are involved in electrical signaling, pH homeostasis, cell-cell communication and survival under osmotic stress. Many prokaryotic potassium channels and members of the eukaryotic Slo channels are regulated by tethered cytoplasmic domains or associated soluble proteins, which belong to the family of regulator of potassium conductance (RCK). RCK domains and subunits form octameric rings, which control ion gating. For years, a common regulatory mechanism was suggested: ligand-induced conformational changes in the octameric ring would pull open a gate in the pore via flexible linkers. Consistently, ligand-dependent conformational changes were described for various RCK gating rings. Yet, recent structural and functional data of complete ion channels uncovered that the following signal transduction to the pore domains is divers. The different RCK-regulated ion channels show remarkably heterogeneous mechanisms with neither the connection from the RCK domain to the pore nor the gate being conserved. Some channels even lack the flexible linkers, while in others the gate cannot easily be assigned. In this review we compare available structures of RCK-gated potassium channels, highlight the similarities and differences of channel gating, and delineate existing inconsistencies.


Assuntos
Ativação do Canal Iônico , Canais de Potássio/metabolismo , Domínios Proteicos , Difosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Concentração de Íons de Hidrogênio , Canais de Potássio/química , Conformação Proteica , Sódio/metabolismo
6.
J Biol Chem ; 294(24): 9605-9614, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31061098

RESUMO

The signaling nucleotide cyclic di-AMP (c-di-AMP) is the only known essential second messenger in bacteria. Recently, c-di-AMP has been identified as being essential for controlling potassium uptake in the model organism Bacillus subtilis and several other bacteria. A B. subtilis strain lacking c-di-AMP is not viable at high potassium concentrations, unless the bacteria acquire suppressor mutations. In this study, we isolated such suppressor mutants and found mutations that reduced the activities of the potassium transporters KtrCD and KimA. Although c-di-AMP-mediated control of KtrCD has previously been demonstrated, it is unknown how c-di-AMP affects KimA activity. Using the DRaCALA screening assay, we tested for any interactions of KimA and other potential target proteins in B. subtilis with c-di-AMP. This assay identified KimA, as well as the K+/H+ antiporter KhtT, the potassium exporter CpaA (YjbQ), the osmoprotectant transporter subunit OpuCA, the primary Mg2+ importer MgtE, and DarB (YkuL), a protein of unknown function, as bona fide c-di-AMP-binding proteins. Further, binding of c-di-AMP to KimA inhibited potassium uptake. Our results indicate that c-di-AMP controls KimA-mediated potassium transport at both kimA gene expression and KimA activity levels. Moreover, the discovery that potassium exporters are c-di-AMP targets indicates that this second messenger controls potassium homeostasis in B. subtilis at a global level by binding to riboswitches and to different classes of transport proteins involved in potassium uptake and export.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Homeostase , Potássio/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Mutação
7.
Elife ; 62017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28504641

RESUMO

Ion channel gating is essential for cellular homeostasis and is tightly controlled. In some eukaryotic and most bacterial ligand-gated K+ channels, RCK domains regulate ion fluxes. Until now, a single regulatory mechanism has been proposed for all RCK-regulated channels, involving signal transduction from the RCK domain to the gating area. Here, we present an inactive ADP-bound structure of KtrAB from Vibrio alginolyticus, determined by cryo-electron microscopy, which, combined with EPR spectroscopy and molecular dynamics simulations, uncovers a novel regulatory mechanism for ligand-induced action at a distance. Exchange of activating ATP to inactivating ADP triggers short helical segments in the K+-translocating KtrB dimer to organize into two long helices that penetrate deeply into the regulatory RCK domains, thus connecting nucleotide-binding sites and ion gates. As KtrAB and its homolog TrkAH have been implicated as bacterial pathogenicity factors, the discovery of this functionally relevant inactive conformation may advance structure-guided drug development.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/ultraestrutura , Vibrio alginolyticus/enzimologia , Vibrio alginolyticus/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Transporte de Cátions/química , Microscopia Crioeletrônica , Espectroscopia de Ressonância de Spin Eletrônica , Simulação de Dinâmica Molecular
8.
Appl Environ Microbiol ; 79(12): 3839-46, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584768

RESUMO

In their natural environments, moderately halophilic bacteria are confronted not only with high salinities but also with low oxygen tensions due to the high salinities. The growth of H. halophilus is strictly aerobic. To analyze the dependence of respiration on the NaCl concentration and oxygen availability of the medium, resting cell experiments were performed. The respiration rates were dependent on the NaCl concentration of the growth medium, as well as on the NaCl concentration of the assay buffer, indicating regulation on the transcriptional and the activity level. Respiration was accompanied by the generation of an electrochemical proton potential (Δµ(H+)) across the cytoplasmic membrane whose magnitude was dependent on the external pH. Genes encoding proteins involved in respiration and Δµ(H+) generation, such as a noncoupled NADH dehydrogenase (NDH-2), complex II, and complex III, were identified in the genome. In addition, genes encoding five different terminal oxidases are present. Inhibitor profiling revealed the presence of NDH-2 and complex III, but the nature of the oxidases could not be resolved using this approach. Expression analysis demonstrated that all the different terminal oxidases were indeed expressed, but by far the most prominent was cta, encoding cytochrome caa3 oxidase. The expression of all of the different oxidase genes increased at high NaCl concentrations, and the transcript levels of cta and qox (encoding cytochrome aa3 oxidase) also increased at low oxygen concentrations. These data culminate in a model of the composition and variation of the respiratory chain of H. halophilus.


Assuntos
Membrana Celular/fisiologia , Metabolismo Energético/fisiologia , Halobacillus/fisiologia , Oxigênio/metabolismo , Salinidade , Trifosfato de Adenosina/metabolismo , Transporte de Elétrons/fisiologia , Metabolismo Energético/genética , Halobacillus/genética , Concentração de Íons de Hidrogênio , Força Próton-Motriz/fisiologia , Reação em Cadeia da Polimerase em Tempo Real
9.
J Biol Chem ; 285(36): 28210-9, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20573964

RESUMO

Transmembrane stretch M(2C) from the bacterial K(+)-translocating protein KtrB is unusually long. In its middle part, termed M(2C2), it contains several small and polar amino acids. This region is flanked by the two alpha-helices M(2C1) and M(2C3) and may form a flexible gate at the cytoplasmic side of the membrane controlling K(+) translocation. In this study, we provide experimental evidence for this notion by using continuous wave and pulse EPR measurements of single and double spin-labeled cysteine variants of KtrB. Most of the spin-labeled residues in M(2C2) were shown to be immobile, pointing to a compact structure. However, the high polarity revealed for the microenvironment of residue positions 317, 318, and 327 indicated the existence of a water-accessible cavity. Upon the addition of K(+) ions, M(2C2) residue Thr-318R1 (R1 indicates the bound spin label) moved with respect to M(2B) residue Asp-222R1 and M(2C3) residue Val-331R1 but not with respect to M(2C1) residue Met-311R1. Based on distances determined between spin-labeled residues of double-labeled variants of KtrB in the presence and absence of K(+) ions, structural models of the open and closed conformations were developed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Potássio/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Polaridade Celular , Cisteína , Espectroscopia de Ressonância de Spin Eletrônica , Variação Genética , Modelos Moleculares , Movimento , Conformação Proteica , Subunidades Proteicas/genética , Marcadores de Spin
10.
J Biol Chem ; 282(19): 14018-27, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17344221

RESUMO

Subunit KtrA of the bacterial Na(+)-dependent K(+)-translocating KtrAB systems belongs to the KTN/RCK family of regulatory proteins and protein domains. They are located at the cytoplasmic side of the cell membrane. By binding ligands they regulate the activity of a number of K(+) transporters and K(+) channels. To investigate the function of KtrA from the bacterium Vibrio alginolyticus (VaKtrA), the protein was overproduced in His-tagged form (His(10)-VaKtrA) and isolated by affinity chromatography. VaKtrA contains a G-rich, ADP-moiety binding beta-alpha-beta-fold ("Rossman fold"). Photocross-linking and flow dialysis were used to determine the binding of [(32)P]ATP and [(32)P]NAD(+) to His(10)-VaKtrA. Binding of other nucleotides was estimated from the competition by these compounds of the binding of the (32)P-labeled nucleotides to the protein. [gamma-(32)P]ATP bound with high affinity to His(10)-VaKtrA (K(D) of 9 microm). All other nucleotides tested exhibited K(D) (K(i)) values of 30 microm or higher. Limited proteolysis with trypsin showed that ATP was the only nucleotide that changed the conformation of VaKtrA. ATP specifically promoted complex formation of VaKtrA with the His-tagged form of its K(+)-translocating partner, VaKtrB-His(6), as detected both in an overlay experiment and in an experiment in which VaKtrA was added to VaKtrB-His(6) bound to Ni(2+)-agarose. In intact cells of Escherichia coli both a high of membrane potential and a high cytoplasmic ATP concentration were required for VaKtrAB activity. C-terminal deletions in VaKtrA showed that for in vivo activity at least 169 N-terminal amino acid residues of its total of 220 are required and that its 40 C-terminal residues are dispensable.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Membrana/metabolismo , Potássio/metabolismo , Vibrio alginolyticus/química , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , Cromatografia de Afinidade , Citoplasma/metabolismo , Escherichia coli , Histidina/química , Histidina/metabolismo , Potenciais da Membrana , Proteínas de Membrana/genética , Polissacarídeos Bacterianos , Subunidades Proteicas , Deleção de Sequência , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA