Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(8): e0031524, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38953352

RESUMO

Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that causes deadly lymphomas in chickens. In chickens, up to 50% of all peripheral T cells are gamma delta (γδ) T cells. Until now, their role in MDV pathogenesis and tumor formation remains poorly understood. To investigate the role of γδ T cells in MDV pathogenesis, we infected recently generated γδ T cell knockout chickens with very virulent MDV. Strikingly, disease and tumor incidence were highly increased in the absence of γδ T cells, indicating that γδ T cells play an important role in the immune response against MDV. In the absence of γδ T cells, virus replication was drastically increased in the thymus and spleen, which are potential sites of T cell transformation. Taken together, our data provide the first evidence that γδ T cells play an important role in the pathogenesis and tumor formation of this highly oncogenic herpesvirus.IMPORTANCEGamma delta (γδ) T cells are the most abundant T cells in chickens, but their role in fighting pathogens remains poorly understood. Marek's disease virus (MDV) is an important veterinary pathogen, that causes one of the most frequent cancers in animals and is used as a model for virus-induced tumor formation. Our study revealed that γδ T cells play a crucial role in combating MDV, as disease and tumor incidence drastically increased in the absence of these cells. γδ T cells restricted virus replication in the key lymphoid organs, thereby decreasing the likelihood of causing tumors and disease. This study provides novel insights into the role of γδ T cells in the pathogenesis of this highly oncogenic virus.


Assuntos
Galinhas , Herpesvirus Galináceo 2 , Doença de Marek , Replicação Viral , Animais , Galinhas/virologia , Doença de Marek/virologia , Doença de Marek/imunologia , Herpesvirus Galináceo 2/patogenicidade , Herpesvirus Galináceo 2/imunologia , Herpesvirus Galináceo 2/genética , Baço/imunologia , Baço/virologia , Baço/patologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/genética , Linfócitos Intraepiteliais/imunologia , Timo/imunologia , Timo/virologia , Timo/patologia , Linfócitos T/imunologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia
2.
STAR Protoc ; 4(2): 102343, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270781

RESUMO

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that infects immune cells and causes a deadly lymphoproliferative disease in chickens. Cytokines and monoclonal antibodies promote the survival of chicken lymphocytes in vitro. Here, we describe protocols for the isolation, maintenance, and efficient MDV infection of primary chicken lymphocytes and lymphocyte cell lines. This facilitates the investigation of key aspects of the MDV life cycle in the primary target cells of viral replication, latency, genome integration, and reactivation. For complete details on the use and execution of this protocol, please refer to Schermuly et al.,1 Bertzbach et al. (2019),2 and You et al.3 For a comprehensive background on MDV, please see Osterrieder et al.4 and Bertzbach et al. (2020).5.

3.
Poult Sci ; 101(4): 101711, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35151935

RESUMO

The bursa of Fabricius (BF) plays a central role in the development of B lymphocytes in birds. During embryonic development the BF primordium is colonized by myeloid and lymphoid prebursal stem cells to form the follicle buds, which ultimately develop into lymphoid follicles with a central medullary and an outer cortical region. Lympho-myeloid differentiation within the medulla is fundamental to normal B cell development. In contrast, the complexity of the cellular composition of the follicular cortex and its role in B cell differentiation has only recently begun to be studied. As an effort to characterize the different bursal cells we have produced a large panel of monoclonal antibodies (mAbs) by immunizing mice with a BF cell suspension of guinea fowl (Numida meleagris). One of these antibodies (clone: 7H3) was found to recognize a 80 kDa cell surface antigen expressed first in the yolk sac blood island of 2-day-old guinea fowl and chicken embryos, and later detected in the embryonic circulation and primary lymphoid organs. Double immunofluorescence revealed that chB6+ (Bu-1+) B cells of embryonic BF co-express the 7H3 antigen. 7H3 immunoreactivity of the bursal follicles gradually diminished after hatching and only a subpopulation of cortical B cells expressed the 7H3 antigen. In addition, in post-hatched birds 7H3 mAb recognizes all T lymphocytes of the thymus, peripheral lymphoid organs and blood. Embryonic BF injected with the 7H3 mAb showed a near complete block of lymphoid follicle formation In conclusion, 7H3 mAb labels a new differentiation antigen specific for avian hematopoietic cells, which migrate through the embryonic mesenchyme, colonize the developing BF lymphoid follicles, and differentiate into a subpopulation of cortical B cells. The staining pattern of the 7H3 mAb and the correlation of expression with cell migration suggest that the antigen will serve as valuable immunological marker for studying the ontogeny of avian B cells.


Assuntos
Bolsa de Fabricius , Galliformes , Animais , Anticorpos Monoclonais , Linfócitos B , Diferenciação Celular , Embrião de Galinha , Galinhas , Camundongos
4.
PLoS Pathog ; 17(10): e1010006, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34673841

RESUMO

Marek's disease virus (MDV) is an alphaherpesvirus that causes immunosuppression and deadly lymphoma in chickens. Lymphoid organs play a central role in MDV infection in animals. B-cells in the bursa of Fabricius facilitate high levels of MDV replication and contribute to dissemination at early stages of infection. Several studies investigated host responses in bursal tissue of MDV-infected chickens; however, the cellular responses specifically in bursal B-cells has never been investigated. We took advantage of our recently established in vitro infection system to decipher the cellular responses of bursal B-cells to infection with a very virulent MDV strain. Here, we demonstrate that MDV infection extends the survival of bursal B-cells in culture. Microarray analyses revealed that most cytokine/cytokine-receptor-, cell cycle- and apoptosis-associated genes are significantly down-regulated in these cells. Further functional assays validated these strong effects of MDV infections on cell cycle progression and thus, B-cell proliferation. In addition, we confirmed that MDV infections protect B-cells from apoptosis and trigger an accumulation of the autophagy marker Lc3-II. Taken together, our data indicate that MDV-infected bursal B-cells show hallmarks of a senescence-like phenotype, leading to a prolonged B-cell survival. This study provides an in-depth analysis of bursal B-cell responses to MDV infection and important insights into how the virus extends the survival of these cells.


Assuntos
Linfócitos B/virologia , Doença de Marek , Animais , Senescência Celular/fisiologia , Galinhas , Mardivirus , Fenótipo
5.
PLoS Biol ; 19(4): e3001057, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33901176

RESUMO

Viral diseases pose major threats to humans and other animals, including the billions of chickens that are an important food source as well as a public health concern due to zoonotic pathogens. Unlike humans and other typical mammals, the major histocompatibility complex (MHC) of chickens can confer decisive resistance or susceptibility to many viral diseases. An iconic example is Marek's disease, caused by an oncogenic herpesvirus with over 100 genes. Classical MHC class I and class II molecules present antigenic peptides to T lymphocytes, and it has been hard to understand how such MHC molecules could be involved in susceptibility to Marek's disease, given the potential number of peptides from over 100 genes. We used a new in vitro infection system and immunopeptidomics to determine peptide motifs for the 2 class II molecules expressed by the MHC haplotype B2, which is known to confer resistance to Marek's disease. Surprisingly, we found that the vast majority of viral peptide epitopes presented by chicken class II molecules arise from only 4 viral genes, nearly all having the peptide motif for BL2*02, the dominantly expressed class II molecule in chickens. We expressed BL2*02 linked to several Marek's disease virus (MDV) peptides and determined one X-ray crystal structure, showing how a single small amino acid in the binding site causes a crinkle in the peptide, leading to a core binding peptide of 10 amino acids, compared to the 9 amino acids in all other reported class II molecules. The limited number of potential T cell epitopes from such a complex virus can explain the differential MHC-determined resistance to MDV, but raises questions of mechanism and opportunities for vaccine targets in this important food species, as well as providing a basis for understanding class II molecules in other species including humans.


Assuntos
Galinhas/imunologia , Herpesvirus Galináceo 2/imunologia , Antígenos de Histocompatibilidade Classe II , Doença de Marek/imunologia , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Bolsa de Fabricius/imunologia , Células Cultivadas , Galinhas/genética , Galinhas/virologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Haplótipos , Herpesvirus Galináceo 2/química , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Epitopos Imunodominantes/química , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Epitopos Imunodominantes/metabolismo , Doença de Marek/genética , Doença de Marek/virologia , Modelos Moleculares , Peptídeos/química , Peptídeos/genética , Peptídeos/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/virologia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/imunologia
6.
Viruses ; 11(12)2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795203

RESUMO

Marek's disease virus (MDV) is an alphaherpesvirus that causes Marek's disease, a malignant lymphoproliferative disease of domestic chickens. While MDV vaccines protect animals from clinical disease, they do not provide sterilizing immunity and allow field strains to circulate and evolve in vaccinated flocks. Therefore, there is a need for improved vaccines and for a better understanding of innate and adaptive immune responses against MDV infections. Interferons (IFNs) play important roles in the innate immune defenses against viruses and induce upregulation of a cellular antiviral state. In this report, we quantified the potent antiviral effect of IFNα and IFNγ against MDV infections in vitro. Moreover, we demonstrate that both cytokines can delay Marek's disease onset and progression in vivo. Additionally, blocking of endogenous IFNα using a specific monoclonal antibody, in turn, accelerated disease. In summary, our data reveal the effects of IFNα and IFNγ on MDV infection and improve our understanding of innate immune responses against this oncogenic virus.


Assuntos
Galinhas/virologia , Herpesvirus Galináceo 2/imunologia , Interferon-alfa/imunologia , Interferon gama/imunologia , Doença de Marek/virologia , Doenças das Aves Domésticas/virologia , Animais , Anticorpos Monoclonais/imunologia , Progressão da Doença , Imunidade Inata , Doença de Marek/patologia , Doença de Marek/prevenção & controle , Vacinas contra Doença de Marek/imunologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/prevenção & controle
7.
Microorganisms ; 7(12)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757008

RESUMO

Natural killer (NK) cells are key players in the innate immune response. They kill virus-infected cells and are crucial for the induction of adaptive immune responses. Marek's disease virus (MDV) is a highly contagious alphaherpesvirus that causes deadly T cell lymphomas in chickens. Host resistance to MDV is associated with differences in NK cell responses; however, the exact role of NK cells in the control of MDV remains unknown. In this study, we assessed if MDV can infect NK cells and alter their activation. Surprisingly, we could demonstrate that primary chicken NK cells are very efficiently infected with very virulent RB-1B MDV and the live-attenuated CVI988 vaccine. Flow cytometry analysis revealed that both RB-1B and CVI988 enhance NK cell degranulation and increase interferon gamma (IFNγ) production in vitro. In addition, we could show that the MDV Eco Q-encoded oncogene (meq) contributes to the induction of NK cell activation using meq knockout viruses. Taken together, our data revealed for the first time that NK cells are efficiently infectable with MDV and that this oncogenic alphaherpesvirus enhances NK cell degranulation and increased IFNγ production in vitro.

8.
Viruses ; 11(3)2019 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884829

RESUMO

Marek's disease virus (MDV) is an oncogenic alphaherpesvirus that infects chickens and poses a serious threat to poultry health. In infected animals, MDV efficiently replicates in B cells in various lymphoid organs. Despite many years of research, the viral transcriptome in primary target cells of MDV remained unknown. In this study, we uncovered the transcriptional landscape of the very virulent RB1B strain and the attenuated CVI988/Rispens vaccine strain in primary chicken B cells using high-throughput RNA-sequencing. Our data confirmed the expression of known genes, but also identified a novel spliced MDV gene in the unique short region of the genome. Furthermore, de novo transcriptome assembly revealed extensive splicing of viral genes resulting in coding and non-coding RNA transcripts. A novel splicing isoform of MDV UL15 could also be confirmed by mass spectrometry and RT-PCR. In addition, we could demonstrate that the associated transcriptional motifs are highly conserved and closely resembled those of the host transcriptional machinery. Taken together, our data allow a comprehensive re-annotation of the MDV genome with novel genes and splice variants that could be targeted in further research on MDV replication and tumorigenesis.


Assuntos
Linfócitos B/virologia , Genes Virais , Herpesvirus Galináceo 2/genética , Doença de Marek/virologia , Isoformas de Proteínas/genética , Transcriptoma , Animais , Linfócitos B/imunologia , Células Cultivadas , Galinhas , Expressão Gênica , Herpesvirus Galináceo 2/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala , Splicing de RNA , Organismos Livres de Patógenos Específicos
9.
Proc Natl Acad Sci U S A ; 115(45): 11603-11607, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30337483

RESUMO

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes immunosuppression, paralysis, and deadly lymphomas in chickens. In infected animals, B cells are efficiently infected and are thought to amplify the virus and transfer it to T cells. MDV subsequently establishes latency in T cells and transforms CD4+ T cells, resulting in fatal lymphomas. Despite many years of research, the exact role of the different B and T cell subsets in MDV pathogenesis remains poorly understood, mostly due to the lack of reverse genetics in chickens. Recently, Ig heavy chain J gene segment knockout (JH-KO) chickens lacking mature and peripheral B cells have been generated. To determine the role of these B cells in MDV pathogenesis, we infected JH-KO chickens with the very virulent MDV RB1B strain. Surprisingly, viral load in the blood of infected animals was not altered in the absence of B cells. More importantly, disease and tumor incidence in JH-KO chickens was comparable to wild-type animals, suggesting that both mature and peripheral B cells are dispensable for MDV pathogenesis. Intriguingly, MDV efficiently replicated in the bursa of Fabricius in JH-KO animals, while spread of the virus to the spleen and thymus was delayed. In the absence of B cells, MDV readily infected CD4+ and CD8+ T cells, allowing efficient virus replication in the lymphoid organs and transformation of T cells. Taken together, our data change the dogma of the central role of B cells, and thereby provide important insights into MDV pathogenesis.


Assuntos
Linfócitos B/imunologia , Genoma Viral , Herpesvirus Galináceo 2/patogenicidade , Linfoma/patologia , Doença de Marek/patologia , Vírus Oncogênicos/patogenicidade , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Bolsa de Fabricius/imunologia , Bolsa de Fabricius/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Embrião de Galinha , Galinhas , DNA Viral/genética , DNA Viral/imunologia , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Contagem de Linfócitos , Linfoma/genética , Linfoma/imunologia , Linfoma/virologia , Doença de Marek/genética , Doença de Marek/imunologia , Doença de Marek/virologia , Vírus Oncogênicos/genética , Vírus Oncogênicos/imunologia , Baço/imunologia , Baço/virologia , Timo/imunologia , Timo/virologia , Carga Viral , Virulência , Replicação Viral
10.
Front Immunol ; 9: 605, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719531

RESUMO

Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine playing critical roles in host defense and acute and chronic inflammation. It has been described in fish, amphibians, and mammals but was considered to be absent in the avian genomes. Here, we report on the identification and functional characterization of the avian ortholog. The chicken TNF-α (chTNF-α) is encoded by a highly GC-rich gene, whose product shares with its mammalian counterpart 45% homology in the extracellular part displaying the characteristic TNF homology domain. Orthologs of chTNF-α were identified in the genomes of 12 additional avian species including Palaeognathae and Neognathae, and the synteny of the closely adjacent loci with mammalian TNF-α orthologs was demonstrated in the crow (Corvus cornix) genome. In addition to chTNF-α, we obtained full sequences for homologs of TNF-α receptors 1 and 2 (TNFR1, TNFR2). chTNF-α mRNA is strongly induced by lipopolysaccharide (LPS) stimulation of monocyte derived, splenic and bone marrow macrophages, and significantly upregulated in splenic tissue in response to i.v. LPS treatment. Activation of T-lymphocytes by TCR crosslinking induces chTNF-α expression in CD4+ but not in CD8+ cells. To gain insights into its biological activity, we generated recombinant chTNF-α in eukaryotic and prokaryotic expression systems. Both, the full-length cytokine and the extracellular domain rapidly induced an NFκB-luciferase reporter in stably transfected CEC-32 reporter cells. Collectively, these data provide strong evidence for the existence of a fully functional TNF-α/TNF-α receptor system in birds thus filling a gap in our understanding of the evolution of cytokine systems.


Assuntos
Proteínas Aviárias/genética , Linfócitos T CD4-Positivos/imunologia , Galinhas/imunologia , Macrófagos/imunologia , Receptores do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Animais , Proteínas Aviárias/metabolismo , Células Cultivadas , Clonagem Molecular , Corvos/imunologia , Sequência Rica em GC/genética , Humanos , Mamíferos/imunologia , NF-kappa B/metabolismo , Paleógnatas/imunologia , Receptores do Fator de Necrose Tumoral/metabolismo , Alinhamento de Sequência
11.
BMC Genomics ; 18(1): 264, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28351377

RESUMO

BACKGROUND: Type I interferons are major players against viral infections and mediate their function by the induction of Interferon regulated genes (IRGs). Recently, it became obvious that these cytokines have a multitude of additional functions. Due to the unique features of the chickens' immune system, available data from mouse models are not easily transferable; hence we performed an extensive analysis of chicken IRGs. RESULTS: A broad database search for homologues to described mammalian IRGs (common IRGs, cIRGs) was combined with a transcriptome analysis of spleen and lung at different time points after application of IFNα. To apply physiological amounts of IFN, half-life of IFN in the chicken was determined. Interestingly, the calculated 36 min are considerably shorter than the ones obtained for human and mouse. Microarray analysis revealed many additional IRGs (newly identified IRGs; nIRGs) and network analysis for selected IRGs showed a broad interaction of nIRGs among each other and with cIRGs. We found that IRGs exhibit a highly tissue and time specific expression pattern as expression quality and quantity differed strongly between spleen and lung and over time. While in the spleen for many affected genes changes in RNA abundance peaked already after 3 h, an increasing or plateau-like regulation after 3, 6 and 9 h was observed in the lung. CONCLUSIONS: The induction or suppression of IRGs in chickens is both tissue and time specific and beside known antiviral mechanisms type I IFN induces many additional cellular functions. We confirmed many known IRGs and established a multitude of so far undescribed ones, thus providing a large database for future research on antiviral mechanisms and additional IFN functions in non-mammalian species.


Assuntos
Galinhas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reguladores , Interferons/farmacologia , Transcriptoma , Animais , Galinhas/metabolismo , Análise por Conglomerados , Biologia Computacional/métodos , Citocinas/genética , Citocinas/metabolismo , Bases de Dados Genéticas , Feminino , Ontologia Genética , Redes Reguladoras de Genes , Interferon-alfa/farmacocinética , Interferon-alfa/farmacologia , Interferons/farmacocinética , Interleucina-6/genética , Interleucina-6/metabolismo , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Elementos de Resposta , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 112(23): 7279-84, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26039998

RESUMO

Marek's disease virus (MDV) is an alphaherpesvirus that causes deadly T-cell lymphomas in chickens and serves as a natural small animal model for virus-induced tumor formation. In vivo, MDV lytically replicates in B cells that transfer the virus to T cells in which the virus establishes latency. MDV also malignantly transforms CD4+ T cells with a T(reg) signature, ultimately resulting in deadly lymphomas. No in vitro infection system for primary target cells of MDV has been available due to the short-lived nature of these cells in culture. Recently, we characterized cytokines and monoclonal antibodies that promote survival of cultured chicken B and T cells. We used these survival stimuli to establish a culture system that allows efficient infection of B and T cells with MDV. We were able to productively infect with MDV B cells isolated from spleen, bursa or blood cultured in the presence of soluble CD40L. Virus was readily transferred from infected B to T cells stimulated with an anti-TCRαVß1 antibody, thus recapitulating the in vivo situation in the culture dish. Infected T cells could then be maintained in culture for at least 90 d in the absence of TCR stimulation, which allowed the establishment of MDV-transformed lymphoblastoid cell lines (LCL). The immortalized cells had a signature comparable to MDV-transformed CD4+ α/ß T cells present in tumors. In summary, we have developed a novel in vitro system that precisely reflects the life cycle of an oncogenic herpesivrus in vivo and will allow us to investigate the interaction between virus and target cells in an easily accessible system.


Assuntos
Mardivirus/fisiologia , Latência Viral , Replicação Viral , Animais , Linfócitos B/virologia , Separação Celular , Transformação Celular Neoplásica , Transformação Celular Viral , Células Cultivadas , Galinhas , Citometria de Fluxo , Genes Virais , Humanos , Hibridização in Situ Fluorescente , Técnicas In Vitro , Mardivirus/genética , Linfócitos T/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA