Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 15(12): 19244-19255, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34843205

RESUMO

Nanoparticles are a promising solution for delivery of a wide range of medicines and vaccines. Optimizing their design depends on being able to resolve, understand, and predict biophysical and therapeutic properties, as a function of design parameters. While existing tools have made great progress, gaps in understanding remain because of the inability to make detailed measurements of multiple correlated properties. Typically, an average measurement is made across a heterogeneous population, obscuring potentially important information. In this work, we develop and apply a method for characterizing nanoparticles with single-particle resolution. We use convex lens-induced confinement (CLiC) microscopy to isolate and quantify the diffusive trajectories and fluorescent intensities of individual nanoparticles trapped in microwells for long times. First, we benchmark detailed measurements of fluorescent polystyrene nanoparticles against prior data to validate our approach. Second, we apply our method to investigate the size and loading properties of lipid nanoparticle (LNP) vehicles containing silencing RNA (siRNA), as a function of lipid formulation, solution pH, and drug-loading. By taking a comprehensive look at the correlation between the intensity and size measurements, we gain insights into LNP structure and how the siRNA is distributed in the LNP. Beyond introducing an analytic for size and loading, this work allows for future studies of dynamics with single-particle resolution, such as LNP fusion and drug-release kinetics. The prime contribution of this work is to better understand the connections between microscopic and macroscopic properties of drug-delivery vehicles, enabling and accelerating their discovery and development.


Assuntos
Portadores de Fármacos , Nanopartículas , Lipossomos , Tamanho da Partícula , RNA Interferente Pequeno
2.
Anal Bioanal Chem ; 413(29): 7157-7178, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34490501

RESUMO

The objective of this critical review is to provide an overview of how emerging bioanalytical techniques are expanding our understanding of the complex physicochemical nature of virus interactions with host cell surfaces. Herein, selected model viruses representing both non-enveloped (simian virus 40 and human norovirus) and enveloped (influenza A virus, human herpes simplex virus, and human immunodeficiency virus type 1) viruses are highlighted. The technologies covered utilize a wide range of cell membrane mimics, from supported lipid bilayers (SLBs) containing a single purified host membrane component to SLBs derived from the plasma membrane of a target cell, which can be compared with live-cell experiments to better understand the role of individual interaction pairs in virus attachment and entry. These platforms are used to quantify binding strengths, residence times, diffusion characteristics, and binding kinetics down to the single virus particle and single receptor, and even to provide assessments of multivalent interactions. The technologies covered herein are surface plasmon resonance (SPR), quartz crystal microbalance with dissipation (QCM-D), dynamic force spectroscopy (DFS), total internal reflection fluorescence (TIRF) microscopy combined with equilibrium fluctuation analysis (EFA) and single particle tracking (SPT), and finally confocal microscopy using multi-labeling techniques to visualize entry of individual virus particles in live cells. Considering the growing scientific and societal needs for untangling, and interfering with, the complex mechanisms of virus binding and entry, we hope that this review will stimulate the community to implement these emerging tools and strategies in conjunction with more traditional methods. The gained knowledge will not only contribute to a better understanding of the virus biology, but may also facilitate the design of effective inhibitors to block virus entry.


Assuntos
Membrana Celular/virologia , Interações Hospedeiro-Patógeno/fisiologia , Biologia Molecular/métodos , Membrana Celular/química , Membrana Celular/metabolismo , Glicosaminoglicanos/metabolismo , HIV-1/patogenicidade , HIV-1/fisiologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/fisiologia , Humanos , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/fisiologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Norovirus/patogenicidade , Norovirus/fisiologia , Polissacarídeos/metabolismo , Vírus 40 dos Símios/patogenicidade , Vírus 40 dos Símios/fisiologia , Internalização do Vírus
3.
Biosens Bioelectron ; 151: 111944, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31999573

RESUMO

Single-molecule biosensors serve the unmet need for real time detection of individual biological molecules in the molecular crowd with high specificity and accuracy, uncovering unique properties of individual molecules which are hidden when measured using ensemble averaging methods. Measuring a signal generated by an individual molecule or its interaction with biological partners is not only crucial for early diagnosis of various diseases such as cancer and to follow medical treatments but also offers a great potential for future point-of-care devices and personalized medicine. This review summarizes and discusses recent advances in nanosensors for both in vitro and in vivo detection of biological molecules offering single-molecule sensitivity. In the first part, we focus on label-free platforms, including electrochemical, plasmonic, SERS-based and spectroelectrochemical biosensors. We review fluorescent single-molecule biosensors in the second part, highlighting nanoparticle-amplified assays, digital platforms and the utilization of CRISPR technology. We finally discuss recent advances in the emerging nanosensor technology of important biological species as well as future perspectives of these sensors.


Assuntos
Técnicas Biossensoriais , Medicina de Precisão , Imagem Individual de Molécula/métodos , Humanos , Nanotecnologia/tendências , Sistemas Automatizados de Assistência Junto ao Leito
4.
ACS Sens ; 4(12): 3166-3174, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31724395

RESUMO

Biomarkers serve as indicators of disease progression or therapeutic response of an medical intervention, and means for enabling a reliable and sensitive biomarker detection are therefore vital in clinical settings. Most biosensor assays require high-affinity interactions in combination with an enzyme or fluorescent tag to enable detection and frequently employ extensive washing procedures prior to signal readout. Attempts to overcome this limitation by using natural biological partners tend to be demanding, because their very low affinity is frequently not compatible with the need of reaching low limits of detection (LODs), especially for circulating biomarkers that possess short half-lives. To address these challenges, we developed a label-free surface plasmon resonance (SPR) platform for the detection of neuregulin 1 (NRG1) using ErbB4-modified liposomes offering both signal amplification and affinity enhancement via functional multivalent interactions. Through the functional avidity interaction between NRG1 and ErbB4, an LOD of 3.5 picomolar was reached, which is about 60-fold higher than traditional SPR and miniaturized immunoassays. The biosensor displays also an 8-fold higher sensitivity when compared with a single-molecule immunoassay employing the natural binding partner rather than a high-affinity antibody as one of the interaction partners. In fact, the liposome-induced avidity between NRG1 and ErbB4 offered an LOD that was comparable to that obtained using a high-affinity antibody and enabled detection of NRG1 in plasma with a LOD of 36 pM. Employing the liposome-enhanced platform in conjunction with a low-affinity biomarker receptor thus enables the assessment of the functional state of the biomarker at competitive LODs and eliminates the need for high-affinity antibodies.


Assuntos
Técnicas Biossensoriais/métodos , Lipossomos/química , Neuregulina-1/análise , Ressonância de Plasmônio de Superfície/métodos , Anticorpos Imobilizados/imunologia , Anticorpos Monoclonais/imunologia , Biomarcadores/análise , Biomarcadores/metabolismo , Células HEK293 , Humanos , Imunoensaio/métodos , Limite de Detecção , Nanopartículas/química , Neuregulina-1/imunologia , Neuregulina-1/metabolismo , Receptor ErbB-4/análise , Receptor ErbB-4/metabolismo
5.
Nanoscale ; 11(24): 11530-11541, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31150038

RESUMO

Artificial organelles are envisioned as nanosized assemblies with intracellular biocatalytic activity to provide the host cells with non-native or missing/lost function. Hybrid vesicles loaded with glucose oxidase (NRGOx) or ß-galactosidase (NRß-Gal) and equipped with lysosomal escape ability are assembled using phospholipids and the block copolymer poly(cholesteryl methacrylate)-block-poly(2-(dimethylamino)ethyl methacrylate). The co-localization of the building blocks and the catalytic activity of NRGOx and NRß-Gal are illustrated. The intracellular activity of the nanoreactors in RAW 264.7 macrophages is confirmed by an enhanced reduction in viability for cells pre-incubated with NRGOx in the presence of glucose due to the generation of cytotoxic hydrogen peroxide compared to the controls. In addition, RAW 264.7 macrophages and primary human macrophages equipped with NRß-Gal are able to intracellularly convert ß-Gal-NONOate into nitric oxide. The successful use of these hybrid vesicles to equip host macrophages with additional catalytic activity diversifies the available toolbox of nanocarriers with envisioned application in cell mimicry.


Assuntos
Glucose Oxidase/química , Macrófagos/metabolismo , Nanoestruturas/química , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , beta-Galactosidase/química , Animais , Humanos , Camundongos , Células RAW 264.7
6.
Langmuir ; 33(16): 4049-4056, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28350474

RESUMO

Multivalent receptor-mediated interactions between virions and a lipid membrane can be weakened using competitive nonpathogenic ligand binding. In particular, the subsequent binding of such ligands can induce detachment of bound virions, a phenomenon of crucial relevance for the development of new antiviral drugs. Focusing on the simian virus 40 (SV40) and recombinant cholera toxin B subunit (rCTB), and using (monosialotetrahexosyl)ganglioside (GM1) as their common receptor in a supported lipid bilayer (SLB), we present the first detailed investigation of this phenomenon by employing the quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy assisted 2D single particle tracking (SPT) techniques. Analysis of the QCM-D-measured release kinetics made it possible to determine the binding strength of a single SV40-GM1 pair. The release dynamics of SV40, monitored by SPT, revealed that a notable fraction of SV40 becomes mobile just before the release, allowing to estimate the distribution of SV40-bound GM1 receptors just prior to release.


Assuntos
Bicamadas Lipídicas/metabolismo , Vírion/metabolismo , Ligação Viral/efeitos dos fármacos , Animais , Bovinos , Toxina da Cólera/metabolismo , Gangliosídeo G(M1)/metabolismo , Cinética , Ligantes , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Vírus 40 dos Símios/metabolismo
7.
Phys Chem Chem Phys ; 18(4): 3040-7, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26739239

RESUMO

The adsorption and fusion of small unilamellar lipid vesicles on silica-based substrates such as glass is a common method used to fabricate supported lipid bilayers. Successful bilayer formation depends on a number of experimental conditions as well as on the quality of the vesicle preparation. Inevitably, a small fraction of unruptured vesicles always remains in a supported bilayer, and this kind of defect can have devastating influences on the morphological and electrical properties of the supported bilayer when used as a biosensing platform. In this paper, a simple method is reported to improve the completeness of supported bilayers by adding a vesicle rupturing peptide as a final step in the fabrication process. Peptide treatment reduces the fraction of unruptured vesicles to less than 1%, as determined by epifluorescence microscopy and quartz crystal microbalance-dissipation experiments. This step can easily be incorporated into existing procedures for preparing high-quality supported lipid bilayers.


Assuntos
Bicamadas Lipídicas , Peptídeos/química
8.
ACS Appl Mater Interfaces ; 7(14): 7505-15, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25812004

RESUMO

We present a new grafting-to method for resistant "non-fouling" poly(ethylene glycol) brushes, which is based on grafting of polymers with reactive end groups in 0.9 M Na2SO4 at room temperature. The grafting process, the resulting brushes, and the resistance toward biomolecular adsorption are investigated by surface plasmon resonance, quartz crystal microbalance, and atomic force microscopy. We determine both grafting density and thickness independently and use narrow molecular weight distributions which result in well-defined brushes. High density (e.g., 0.4 coils per nm(2) for 10 kDa) and thick (40 nm for 20 kDa) brushes are readily achieved that suppress adsorption from complete serum (10× dilution, exposure for 50 min) by up to 99% on gold (down to 4 ng/cm(2) protein coverage). The brushes outperform oligo(ethylene glycol) monolayers prepared on the same surfaces and analyzed in the same manner. The brush heights are in agreement with calculations based on a simple model similar to the de Gennes "strongly stretched" brush, where the height is proportional to molecular weight. This result has so far generally been considered to be possible only for brushes prepared by grafting-from. Our results are consistent with the theory that the brushes act as kinetic barriers rather than efficient prevention of adsorption at equilibrium. We suggest that the free energy barrier for passing the brush depends on both monomer concentration and thickness. The extraordinary simplicity of the method and good inert properties of the brushes should make our results widely applicable in biointerface science.


Assuntos
Materiais Biocompatíveis/química , Proteínas Sanguíneas/química , Polietilenoglicóis/química , Adsorção , Módulo de Elasticidade , Teste de Materiais , Peso Molecular , Estresse Mecânico , Resistência à Tração
9.
Artigo em Inglês | MEDLINE | ID: mdl-23679460

RESUMO

Attachment of lytic peptides to the lipid membrane of virions or bacteria is often accompanied by their aggregation and pore formation, resulting eventually in membrane rupture and pathogen neutralization. The membrane rupture may occur gradually via formation of many pores or abruptly after the formation of the first pore. In academic studies, this process is observed during interaction of peptides with lipid vesicles. We present an analytical model and the corresponding Monte Carlo simulations focused on the pore formation in such situations. Specifically, we calculate the time of the first nucleation-limited pore-formation event and show the distribution of this time in the regime when the fluctuations of the number of peptides attached to a vesicle are appreciable. The results obtained are used to clarify the mechanism of the pore formation and membrane destabilization observed recently during interaction of highly active α-helical peptide with sub-100-nm lipid vesicles that mimic enveloped viruses with nanoscale membrane curvature. The model proposed and the analysis presented are generic and may be applicable to other meso- and nanosystems.


Assuntos
Membrana Celular/metabolismo , Modelos Biológicos , Método de Monte Carlo , Peptídeos/metabolismo , Membrana Celular/química , Cinética , Lipídeos de Membrana/metabolismo , Peptídeos/química , Porosidade , Estrutura Secundária de Proteína
10.
Sci Rep ; 2: 824, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23139869

RESUMO

We present an amperometric study of content release from individual vesicles in an artificial secretory cell designed with the minimal components required to carry out exocytosis. Here, the membranes of the cell and vesicles are substituted for protein-free giant and large unilamellar vesicles respectively. In replacement of the SNARE-complex, the cell model was equipped with an analog composed of complimentary DNA constructs. The DNA constructs hybridize in a zipper-like fashion to bring about docking of the artificial secretory vesicles and following the addition of Ca(2+ )artificial exocytosis was completed. Exocytotic events recorded from the artificial cell closely approximate exocytosis in live cells. The results together with simulations of vesicular release demonstrate that the molecular flux in this model is attenuated and we suggest that this is the result of restricted diffusion through a semi-stable fusion pore or a partitioning of the signalling molecule out of the fused vesicle membrane.


Assuntos
Vesículas Secretórias/fisiologia , Lipossomas Unilamelares/metabolismo , Animais , Cálcio/metabolismo , Colesterol/química , DNA/química , Técnicas Eletroquímicas , Eletrodos , Exocitose , Modelos Biológicos , Células PC12 , Ratos , Proteínas SNARE/metabolismo
11.
Nano Lett ; 12(11): 5719-25, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23092308

RESUMO

Using tethered sub-100 nm lipid vesicles that mimic enveloped viruses with nanoscale membrane curvature, we have in this work designed a total internal reflection fluorescence microscopy-based single vesicle assay to investigate how an antiviral amphipathic α-helical (AH) peptide interacts with lipid membranes to induce membrane curvature-dependent pore formation and membrane destabilization. Based on a combination of statistics from single vesicle imaging, binding kinetics data, and theoretical analysis, we propose a mechanistic model that is consistent with the experimentally observed peptide association and pore formation kinetics at medically relevant peptide concentrations (10 nM to 1 µM) and unusually low peptide-to-lipid (P/L) ratio (~1/1000). Importantly, the preference of the AH peptide to selectively rupture virions with sub-100 nm diameters appears to be related to membrane strain-dependent pore formation rather than to previously observed nanoscale membrane curvature facilitated binding of AH peptides. Compared to other known proteins and peptides, the combination of low effective P/L ratio and high specificity for nm-sized membrane curvature lends this particular AH peptide great potential to serve as a framework for developing a highly specific and potent antiviral agent for prophylactic and therapeutic applications while avoiding toxic side effects against host cell membranes.


Assuntos
Antivirais/farmacologia , Lipídeos/química , Nanotecnologia/métodos , Biotina/química , Membrana Celular/metabolismo , Fluoresceínas/química , Cinética , Lipídeos de Membrana/química , Nanopartículas/química , Peptídeos/química , Fosfatidilcolinas/química , Estrutura Secundária de Proteína , Rodaminas/química , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
12.
Nat Protoc ; 5(6): 1096-106, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20539285

RESUMO

Supported lipid bilayers (SLBs) mimic biological membranes and are a versatile platform for a wide range of biophysical research fields including lipid-protein interactions, protein-protein interactions and membrane-based biosensors. The quartz crystal microbalance with dissipation monitoring (QCM-D) has had a pivotal role in understanding SLB formation on various substrates. As shown by its real-time kinetic monitoring of SLB formation, QCM-D can probe the dynamics of biomacromolecular interactions. We present a protocol for constructing zwitterionic SLBs supported on silicon oxide and titanium oxide, and discuss technical issues that need to be considered when working with charged lipid compositions. Furthermore, we explain a recently developed strategy that uses an amphipathic, alpha-helical (AH) peptide to form SLBs on gold and titanium oxide substrates. The protocols can be completed in less than 3 h.


Assuntos
Técnicas Biossensoriais/métodos , Bicamadas Lipídicas/química , Fenômenos Biofísicos , Ouro , Fusão de Membrana , Óxidos , Peptídeos/química , Estrutura Secundária de Proteína , Quartzo , Compostos de Silício , Ressonância de Plasmônio de Superfície/métodos , Titânio
13.
Langmuir ; 26(12): 9927-36, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20337414

RESUMO

In the in vitro motility assay, actin filaments are propelled by surface-adsorbed myosin motors, or rather, myosin motor fragments such as heavy meromyosin (HMM). Recently, efforts have been made to develop actomyosin powered nanodevices on the basis of this assay but such developments are hampered by limited understanding of the HMM adsorption geometry. Therefore, we here investigate the HMM adsorption geometries on trimethylchlorosilane- [TMCS-] derivatized hydrophobic surfaces and on hydrophilic negatively charged surfaces (SiO(2)). The TMCS surface is of great relevance in fundamental studies of actomyosin and both surface substrates are important for the development of motor powered nanodevices. Whereas both the TMCS and SiO(2) surfaces were nearly saturated with HMM (incubation at 120 microg mL(-1)) there was little actin binding on SiO(2) in the absence of ATP and no filament sliding in the presence of ATP. This contrasts with excellent actin-binding and motility on TMCS. Quartz crystal microbalance with dissipation (QCM-D) studies demonstrate a HMM layer with substantial protein mass up to 40 nm above the TMCS surface, considerably more than observed for myosin subfragment 1 (S1; 6 nm). Together with the excellent actin transportation on TMCS, this strongly suggests that HMM adsorbs to TMCS mainly via its most C-terminal tail part. Consistent with this idea, fluorescence interference contrast (FLIC) microscopy showed that actin filaments are held by HMM 38 +/- 2 nm above the TMCS-surface with the catalytic site, on average, 20-30 nm above the surface. Viewed in a context with FLIC, QCM-D and TIRF results, the lack of actin motility and the limited actin binding on SiO(2) shows that HMM adsorbs largely via the actin-binding region on this surface with the C-terminal coiled-coil tails extending >50 nm into solution. The results and new insights from this study are of value, not only for the development of motor powered nanodevices but also for the interpretation of fundamental biophysical studies of actomyosin function and for the understanding of surface-protein interactions in general.


Assuntos
Materiais Biomiméticos/química , Subfragmentos de Miosina/química , Eletricidade Estática , Trifosfato de Adenosina , Adsorção , Ligação Proteica , Dióxido de Silício , Propriedades de Superfície , Compostos de Trimetilsilil
14.
ACS Nano ; 4(4): 2210-6, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20218668

RESUMO

We show that aligned gold nanotube arrays capable of supporting plasmonic resonances can be used as high performance refractive index sensors in biomolecular binding reactions. A methodology to examine the sensing ability of the inside and outside walls of the nanotube structures is presented. The sensitivity of the plasmonic nanotubes is found to increase as the nanotube walls are exposed, and the sensing characteristic of the inside and outside walls is shown to be different. Finite element simulations showed good qualitative agreement with the observed behavior. Free standing gold nanotubes displayed bulk sensitivities in the region of 250 nm per refractive index unit and a signal-to-noise ratio better than 1000 upon protein binding which is highly competitive with state-of-the-art label-free sensors.


Assuntos
Ouro/química , Nanotubos/química , Ressonância de Plasmônio de Superfície/métodos , Adsorção , Óxido de Alumínio/química , Avidina/análise , Avidina/química , Eletrodos , Polímeros/química , Pirróis/química
15.
Anal Chem ; 81(12): 4752-61, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19459601

RESUMO

We have used simultaneous quartz crystal microbalance-dissipation (QCM-D) monitoring and four-detector optical reflectometry to monitor in situ the structural transformation of intact vesicles to a lipid bilayer on a gold surface. The structural transformation of lipid vesicles to a bilayer was achieved by introducing a particular amphipathic, alpha-helical (AH) peptide. The combined experimental apparatus allows us to simultaneously follow the acoustic and optical property changes of the vesicle rupturing process upon interaction with AH peptides. While QCM-D and reflectometry have similar sensitivities in terms of mass and thickness resolution, there are unique advantages in operating these techniques simultaneously on the same substrate. These advantages permit us to (1) follow the complex interaction between AH peptides and intact vesicles with both acoustic and optical mass measurements, (2) calculate the amount of dynamically coupled water during the interaction between AH peptides and intact vesicles, (3) demonstrate that the unexpectedly large increase of both adsorbed mass and the film's energy dissipation is mainly caused by swelling of the vesicles during the binding interaction with AH peptides, and (4) permit us to understand the structural transformation from intact vesicles to a bilayer via the AH peptide interaction by monitoring viscoelastic properties, acoustic mass, optical mass, and thickness changes of both the binding and destabilization processes. From the deduced "hydration signature" we followed the complex transformation of lipid assemblies. On the basis of this information, a mechanism of this structural transformation is proposed that provides new insight into the process of vesicle fusion on solid substrates.


Assuntos
Peptídeos/química , Quartzo/química , Refratometria/métodos , Lipossomas Unilamelares/química , Sequência de Aminoácidos , Ouro/química , Bicamadas Lipídicas/química , Dados de Sequência Molecular , Fotometria , Estrutura Secundária de Proteína , Refratometria/instrumentação , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA