Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951595

RESUMO

The clustering of death receptors (DRs) at the membrane leads to apoptosis. With the goal of treating tumours, multivalent molecular tools that initiate this mechanism have been developed. However, DRs are also ubiquitously expressed in healthy tissue. Here we present a stimuli-responsive robotic switch nanodevice that can autonomously and selectively turn on the display of cytotoxic ligand patterns in tumour microenvironments. We demonstrate a switchable DNA origami that normally hides six ligands but displays them as a hexagonal pattern 10 nm in diameter once under higher acidity. This can effectively cluster DRs and trigger apoptosis of human breast cancer cells at pH 6.5 while remaining inert at pH 7.4. When administered to mice bearing human breast cancer xenografts, this nanodevice decreased tumour growth by up to 70%. The data demonstrate the feasibility and opportunities for developing ligand pattern switches as a path for targeted treatment.

2.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069036

RESUMO

The DNA origami method has revolutionized the field of DNA nanotechnology since its introduction. These nanostructures, with their customizable shape and size, addressability, nontoxicity, and capacity to carry bioactive molecules, are promising vehicles for therapeutic delivery. Different approaches have been developed for manipulating and folding DNA origami, resulting in compact lattice-based and wireframe designs. Platinum-based complexes, such as cisplatin and phenanthriplatin, have gained attention for their potential in cancer and antiviral treatments. Phenanthriplatin, in particular, has shown significant antitumor properties by binding to DNA at a single site and inhibiting transcription. The present work aims to study wireframe DNA origami nanostructures as possible carriers for platinum compounds in cancer therapy, employing both cisplatin and phenanthriplatin as model compounds. This research explores the assembly, platinum loading capacity, stability, and modulation of cytotoxicity in cancer cell lines. The findings indicate that nanomolar quantities of the ball-like origami nanostructure, obtained in the presence of phenanthriplatin and therefore loaded with that specific drug, reduced cell viability in MCF-7 (cisplatin-resistant breast adenocarcinoma cell line) to 33%, while being ineffective on the other tested cancer cell lines. The overall results provide valuable insights into using wireframe DNA origami as a highly stable possible carrier of Pt species for very long time-release purposes.


Assuntos
Neoplasias da Mama , Nanoestruturas , Humanos , Feminino , Cisplatino/farmacologia , Platina/farmacologia , Preparações Farmacêuticas , DNA/química , Nanoestruturas/química , Conformação de Ácido Nucleico
3.
EMBO Rep ; 23(7): e54499, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35593064

RESUMO

Targeting myeloid cells, especially microglia, for the treatment of neuroinflammatory diseases such as multiple sclerosis (MS), is underappreciated. Our in silico drug screening reveals topoisomerase 1 (TOP1) inhibitors as promising drug candidates for microglial modulation. We show that TOP1 is highly expressed in neuroinflammatory conditions, and TOP1 inhibition using camptothecin (CPT) and its FDA-approved analog topotecan (TPT) reduces inflammatory responses in microglia/macrophages and ameliorates neuroinflammation in vivo. Transcriptomic analyses of sorted microglia from LPS-challenged mice reveal an altered transcriptional phenotype following TPT treatment. To target myeloid cells, we design a nanosystem using ß-glucan-coated DNA origami (MyloGami) loaded with TPT (TopoGami). MyloGami shows enhanced specificity to myeloid cells while preventing the degradation of the DNA origami scaffold. Myeloid-specific TOP1 inhibition using TopoGami significantly suppresses the inflammatory response in microglia and mitigates MS-like disease progression. Our findings suggest that TOP1 inhibition in myeloid cells represents a therapeutic strategy for neuroinflammatory diseases and that the myeloid-specific nanosystems we designed may also benefit the treatment of other diseases with dysfunctional myeloid cells.


Assuntos
Doenças Neuroinflamatórias , Inibidores da Topoisomerase I , Animais , DNA , Macrófagos , Camundongos , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia
4.
ACS Nano ; 15(6): 9614-9626, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34019379

RESUMO

The nanoscale spatial organization of transmembrane tumor necrosis factor (TNF) receptors has been implicated in the regulation of cellular fate. Accordingly, molecular tools that can induce specific arrangements of these receptors on cell surfaces would give us an opportunity to study these effects in detail. To achieve this, we introduce DNA origami nanostructures that precisely scaffold the patterning of TNF-related apoptosis-inducing ligand-mimicking peptides at nanoscale level. Stimulating human breast cancer cells with these patterns, we find that around 5 nm is the critical interligand distance of hexagonally patterned peptides to induce death receptor clustering and a resulting apoptosis. We thus offer a strategy to reverse the non-efficacy of current ligand- and antibody-based methods for TNF superfamily activation.


Assuntos
Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Ligante Indutor de Apoptose Relacionado a TNF , Apoptose , Análise por Conglomerados , Humanos , Peptídeos , Fator de Necrose Tumoral alfa
5.
Nat Nanotechnol ; 16(1): 85-95, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33139936

RESUMO

Most proteins at the plasma membrane are not uniformly distributed but localize to dynamic domains of nanoscale dimensions. To investigate their functional relevance, there is a need for methods that enable comprehensive analysis of the compositions and spatial organizations of membrane protein nanodomains in cell populations. Here we describe the development of a non-microscopy-based method for ensemble analysis of membrane protein nanodomains. The method, termed nanoscale deciphering of membrane protein nanodomains (NanoDeep), is based on the use of DNA nanoassemblies to translate membrane protein organization information into a DNA sequencing readout. Using NanoDeep, we characterized the nanoenvironments of Her2, a membrane receptor of critical relevance in cancer. Importantly, we were able to modulate by design the inventory of proteins analysed by NanoDeep. NanoDeep has the potential to provide new insights into the roles of the composition and spatial organization of protein nanoenvironments in the regulation of membrane protein function.


Assuntos
Bioquímica/métodos , Neoplasias da Mama/metabolismo , DNA/química , Proteínas de Membrana/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , DNA de Cadeia Simples/química , Receptores ErbB/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas de Membrana/química , Nanotecnologia/métodos , Oligonucleotídeos/química , Domínios Proteicos , Receptor ErbB-2/química , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Proteínas Recombinantes de Fusão/genética , Reprodutibilidade dos Testes , Ressonância de Plasmônio de Superfície
6.
Nucleic Acids Res ; 48(10): 5777-5787, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32352518

RESUMO

Ligand binding induces extensive spatial reorganization and clustering of the EphA2 receptor at the cell membrane. It has previously been shown that the nanoscale spatial distribution of ligands modulates EphA2 receptor reorganization, activation and the invasive properties of cancer cells. However, intracellular signaling downstream of EphA2 receptor activation by nanoscale spatially distributed ligands has not been elucidated. Here, we used DNA origami nanostructures to control the positions of ephrin-A5 ligands at the nanoscale and investigated EphA2 activation and transcriptional responses following ligand binding. Using RNA-seq, we determined the transcriptional profiles of human glioblastoma cells treated with DNA nanocalipers presenting a single ephrin-A5 dimer or two dimers spaced 14, 40 or 100 nm apart. These cells displayed divergent transcriptional responses to the differing ephrin-A5 nano-organization. Specifically, ephrin-A5 dimers spaced 40 or 100 nm apart showed the highest levels of differential expressed genes compared to treatment with nanocalipers that do not present ephrin-A5. These findings show that the nanoscale organization of ephrin-A5 modulates transcriptional responses to EphA2 activation.


Assuntos
Nanoestruturas , Receptor EphA2/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , DNA/química , Efrina-A5/metabolismo , Humanos , Ligantes , Fosforilação , RNA-Seq
7.
J Am Chem Soc ; 141(26): 10205-10213, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31244182

RESUMO

The proto-oncogene KIT encodes for a tyrosine kinase receptor, which is a clinically validated target for treating gastrointestinal stromal tumors. The KIT promoter contains a G-rich domain within a relatively long sequence potentially able to form three adjacent G-quadruplex (G4) units, namely, K2, SP, and K1. These G4 domains have been studied mainly as single quadruplex units derived from short truncated sequences and are currently considered promising targets for anticancer drugs, alternatively to the encoded protein. Nevertheless, the information reported so far does not contemplate the interplay between those neighboring G4s in the context of the whole promoter, possibly thwarting drug-discovery efforts. Here we report the structural and functional study of the KIT promoter core sequence, in both single- and double-stranded forms, which includes all three predicted G4 units. By preventing the formation of alternatively one or two G4 units and by combining biophysical techniques and biological assays, we show for the first time that these quadruplexes cannot be analyzed independently, but they are correlated to each other. Our data suggest that, while K2 and K1 G-rich sequences retain the ability to fold into parallel G4 motifs within a long sequence, the SP G-rich domain contributes to G4 structure only together with K2. Remarkably, we have found that, in the context of a dynamic equilibrium between the three G4 units, the G4 formed by K1 has the most significant influence on the structure stability and on the biological role of the whole promoter.


Assuntos
Quadruplex G , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-kit/genética , Humanos , Proto-Oncogene Mas
8.
Nat Methods ; 11(8): 841-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24997862

RESUMO

The spatial organization of membrane-bound ligands is thought to regulate receptor-mediated signaling. However, direct regulation of receptor function by nanoscale distribution of ligands has not yet been demonstrated, to our knowledge. We developed rationally designed DNA origami nanostructures modified with ligands at well-defined positions. Using these 'nanocalipers' to present ephrin ligands, we showed that the nanoscale spacing of ephrin-A5 directs the levels of EphA2 receptor activation in human breast cancer cells. Furthermore, we found that the nanoscale distribution of ephrin-A5 regulates the invasive properties of breast cancer cells. Our ligand nanocaliper approach has the potential to provide insight into the roles of ligand nanoscale spatial distribution in membrane receptor-mediated signaling.


Assuntos
Nanotecnologia , Receptores de Superfície Celular/metabolismo , Endocitose , Ligantes
9.
ACS Nano ; 6(10): 8684-91, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22950811

RESUMO

In the assembly of DNA nanostructures, the specificity of Watson-Crick base pairing is used to control matter at the nanoscale. Using this technology for drug delivery is a promising route toward the magic bullet concept, as it would allow the realization of complex assemblies that co-localize drugs, targeting ligands and other functionalities in one nanostructure. Anthracyclines' mechanism of action in cancer therapy is to intercalate DNA, and since DNA nanotechnology allows for such a high degree of customization, we hypothesized that this would allow us to tune the DNA nanostructures for optimal delivery of the anthracycline doxorubicin (Dox) to human breast cancer cells. We have tested two DNA origami nanostructures on three different breast cancer cell lines (MDA-MB-231, MDA-MB-468, and MCF-7). The different nanostructures were designed to exhibit varying degrees of global twist, leading to different amounts of relaxation in the DNA double-helix structure. By tuning the nanostructure design we are able to (i) tune the encapsulation efficiency and the release rate of the drug and (ii) increase the cytotoxicity and lower the intracellular elimination rate when compared to free Dox. Enhanced apoptosis induced by the delivery system in breast cancer cells was investigated using flow cytometry. The findings indicate that DNA origami nanostructures represent an efficient delivery system for Dox, resulting in high degrees of internalization and increased induction of programmed cell death in breast cancer cells. In addition, by designing the structures to exhibit different degrees of twist, we are able to rationally control and tailor the drug release kinetics.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Preparações de Ação Retardada/administração & dosagem , Terapia Genética/métodos , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Transfecção/métodos , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Inativação Gênica , Humanos , Nanocápsulas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA