Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(9): 5047-5063, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35489064

RESUMO

Telomeres, the ends of linear chromosomes, are composed of repetitive DNA sequences, histones and a protein complex called shelterin. How DNA is packaged at telomeres is an outstanding question in the field with significant implications for human health and disease. Here, we studied the architecture of telomeres and their spatial association with other chromatin domains in different cell types using correlative light and electron microscopy. To this end, the shelterin protein TRF1 or TRF2 was fused in tandem to eGFP and the peroxidase APEX2, which provided a selective and electron-dense label to interrogate telomere organization by transmission electron microscopy, electron tomography and scanning electron microscopy. Together, our work reveals, for the first time, ultrastructural insight into telomere architecture. We show that telomeres are composed of a dense and highly compacted mesh of chromatin fibres. In addition, we identify marked differences in telomere size, shape and chromatin compaction between cancer and non-cancer cells and show that telomeres are in direct contact with other heterochromatin regions. Our work resolves the internal architecture of telomeres with unprecedented resolution and advances our understanding of how telomeres are organized in situ.


Assuntos
Telômero/ultraestrutura , Humanos , Microscopia Eletrônica , Complexo Shelterina , Telômero/genética , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-26579212

RESUMO

BACKGROUND: Previous studies of higher order chromatin organization in nuclei of mammalian species revealed both structural consistency and species-specific differences between cell lines and during early embryonic development. Here, we extended our studies to nuclear landscapes in the human myelopoietic lineage representing a somatic cell differentiation system. Our longterm goal is a search for structural features of nuclei, which are restricted to certain cell types/species, as compared to features, which are evolutionary highly conserved, arguing for their basic functional roles in nuclear organization. RESULTS: Common human hematopoietic progenitors, myeloid precursor cells, differentiated monocytes and granulocytes analyzed by super-resolution fluorescence microscopy and electron microscopy revealed profound differences with respect to global chromatin arrangements, the nuclear space occupied by the interchromatin compartment and the distribution of nuclear pores. In contrast, we noted a consistent organization in all cell types with regard to two co-aligned networks, an active (ANC) and an inactive (INC) nuclear compartment delineated by functionally relevant hallmarks. The ANC is enriched in active RNA polymerase II, splicing speckles and histone signatures for transcriptionally competent chromatin (H3K4me3), whereas the INC carries marks for repressed chromatin (H3K9me3). CONCLUSIONS: Our findings substantiate the conservation of the recently published ANC-INC network model of mammalian nuclear organization during human myelopoiesis irrespective of profound changes of the global nuclear architecture observed during this differentiation process. According to this model, two spatially co-aligned and functionally interacting active and inactive nuclear compartments (ANC and INC) pervade the nuclear space.

3.
Methods Mol Biol ; 1042: 299-336, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23980016

RESUMO

The term correlative microscopy denotes the sequential visualization of one and the same cell using various microscopic techniques. Correlative microscopy provides a unique platform to combine the particular strength of each microscopic approach and compensate for its specific limitations. As an example, we report results of a correlative microscopic study exploring features of the nuclear landscape in HeLa cells. We present a detailed protocol to first investigate distinct structural features of a living cell in space and time (4D) using spinning disk laser scanning microscopy (SDLSM). Then, after fixation and staining of selected structures (e.g., by means of immunodetection), details of these structures are explored at increasingly higher resolution using three-dimensional (3D) confocal laser scanning microscopy (CLSM); super-resolution fluorescence microscopy, such as three-dimensional structured illumination microscopy (3D-SIM); and transmission electron microscopy (TEM). We discuss problems involved in the comparison of images of a given cell nucleus recorded with different microscopic approaches, which requires not only a compensation for different resolutions but also for various distortions.


Assuntos
Núcleo Celular/metabolismo , Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão/métodos , Microscopia de Fluorescência/métodos , Análise de Célula Única/métodos , Linhagem Celular Tumoral , Células HeLa , Humanos , Imageamento Tridimensional/métodos , Proteínas Luminescentes/química , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA