Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Biochem Biophys Res Commun ; 727: 150310, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38941793

RESUMO

Targeting the hydrophobic Phe43 pocket of HIV's envelope glycoprotein gp120 is a critical strategy for antiviral interventions due to its role in interacting with the host cell's CD4. Previous inhibitors, including small molecules and CD4 mimetic peptides based on scyllatoxin, have demonstrated significant binding and neutralization capabilities but were often chemically synthesized or contained non-canonical amino acids. Microbial expression using natural amino acids offers advantages such as cost-effectiveness, scalability, and efficient production of fusion proteins. In this study, we enhanced the previous scyllatoxin-based synthetic peptide by substituting natural amino acids and successfully expressed it in E. coli. The peptide was optimized by mutating the C-terminal amidated valine to valine and glutamine, and by reducing the disulfide bonds from three to two. Circular dichroism confirmed proper secondary structure formation, and fluorescence polarization analysis revealed specific, concentration-dependent binding to HIV gp120, supported by molecular dynamics simulations. These findings indicate the potential for scalable microbial production of effective antiviral peptides, with significant applications in pharmaceutical development for HIV treatment.


Assuntos
Escherichia coli , Proteína gp120 do Envelope de HIV , Peptídeos , Ligação Proteica , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Simulação de Dinâmica Molecular , Humanos , Sequência de Aminoácidos , Desenho de Fármacos
2.
Biomed Pharmacother ; 172: 116232, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38310652

RESUMO

Proinsulin C-peptide, a biologically active polypeptide released from pancreatic ß-cells, is known to prevent hyperglycemia-induced microvascular leakage; however, the role of C-peptide in migration and invasion of cancer cells is unknown. Here, we investigated high glucose-induced migration and invasion of ovarian cancer cells and the inhibitory effects of human C-peptide on metastatic cellular responses. In SKOV3 human ovarian cancer cells, high glucose conditions activated a vicious cycle of reactive oxygen species (ROS) generation and transglutaminase 2 (TGase2) activation through elevation of intracellular Ca2+ levels. TGase2 played a critical role in high glucose-induced ovarian cancer cell migration and invasion through ß-catenin disassembly. Human C-peptide inhibited high glucose-induced disassembly of adherens junctions and ovarian cancer cell migration and invasion through inhibition of ROS generation and TGase2 activation. The preventive effect of C-peptide on high glucose-induced ovarian cancer cell migration and invasion was further demonstrated in ID8 murine ovarian cancer cells. Our findings suggest that high glucose conditions induce the migration and invasion of ovarian cancer cells, and human C-peptide inhibits these metastatic responses by preventing ROS generation, TGase2 activation, and subsequent disassembly of adherens junctions.


Assuntos
Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Peptídeo C/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Neoplasias Ovarianas/patologia , Movimento Celular , Glucose/farmacologia
3.
FASEB J ; 37(2): e22763, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36625326

RESUMO

Diabetic retinopathy (DR) is caused by retinal vascular dysfunction and neurodegeneration. Intraocular delivery of C-peptide has been shown to be beneficial against hyperglycemia-induced microvascular leakage in the retina of diabetes; however, the effect of C-peptide on diabetes-induced retinal neurodegeneration remains unknown. Moreover, extraocular C-peptide replacement therapy against DR to avoid various adverse effects caused by intravitreal injections has not been studied. Here, we demonstrate that systemic C-peptide supplementation using osmotic pumps or biopolymer-conjugated C-peptide hydrogels ameliorates neurodegeneration by inhibiting vascular endothelial growth factor-induced pathological events, but not hyperglycemia-induced vascular endothelial growth factor expression, in the retinas of diabetic mice. C-peptide inhibited hyperglycemia-induced activation of macroglial and microglial cells, downregulation of glutamate aspartate transporter 1 expression, neuronal apoptosis, and histopathological changes by a mechanism involving reactive oxygen species generation in the retinas of diabetic mice, but transglutaminase 2, which is involved in retinal vascular leakage, is not associated with these pathological events. Overall, our findings suggest that systemic C-peptide supplementation alleviates hyperglycemia-induced retinal neurodegeneration by inhibiting a pathological mechanism, involving reactive oxygen species, but not transglutaminase 2, in diabetes.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética , Hiperglicemia , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peptídeo C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Retina/metabolismo , Fatores de Crescimento do Endotélio Vascular , Retinopatia Diabética/metabolismo , Hiperglicemia/metabolismo , Suplementos Nutricionais
4.
J Mol Endocrinol ; 68(4): 209-223, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35266881

RESUMO

Proinsulin C-peptide has a protective effect against diabetic complications; however, its role in hyperglycemia-induced pulmonary fibrosis is unknown. In this study, we investigated the inhibitory effect of C-peptide on hyperglycemia-induced pulmonary fibrosis and the molecular mechanism of C-peptide action in the lungs of diabetic mice and in human pulmonary microvascular endothelial cells (HPMVECs). We found that, in the lungs of diabetic mice, C-peptide supplementation using osmotic pumps attenuated hyperglycemia-induced pulmonary fibrosis and expression of fibrosis-related proteins. In HPMVECs, C-peptide inhibited vascular endothelial growth factor-induced adherens junction disruption and endothelial cell permeability by inhibiting reactive oxygen species generation and transglutaminase (TGase) activation. In the lungs, C-peptide supplementation suppressed hyperglycemia-induced reactive oxygen species generation, TGase activation, and microvascular leakage. C-peptide inhibited hyperglycemia-induced inflammation and apoptosis, which are involved in the pathological process of pulmonary fibrosis. We also demonstrated the role of TGase2 in hyperglycemia-induced vascular leakage, inflammation, apoptosis, and pulmonary fibrosis in the lungs of diabetic TGase2-null (Tgm2-/-) mice. Furthermore, we demonstrated a long-term inhibitory effect of systemic delivery of C-peptide using K9-C-peptide hydrogels on hyperglycemia-induced fibrosis in diabetic lungs. Overall, our findings suggest that C-peptide alleviates hyperglycemia-induced pulmonary fibrosis by inhibiting TGase2-mediated microvascular leakage, inflammation, and apoptosis in diabetes.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Fibrose Pulmonar , Animais , Peptídeo C/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Células Endoteliais/metabolismo , Hiperglicemia/complicações , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteína 2 Glutamina gama-Glutamiltransferase , Fibrose Pulmonar/complicações , Fibrose Pulmonar/etiologia , Espécies Reativas de Oxigênio/metabolismo , Transglutaminases/genética , Transglutaminases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Exp Mol Med ; 53(10): 1612-1622, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34697389

RESUMO

Low-dose metronomic chemotherapy (LDMC) inhibits tumor angiogenesis and growth by targeting tumor-associated endothelial cells, but the molecular mechanism has not been fully elucidated. Here, we examined the functional role of regulated in development and DNA damage responses 1 (REDD1), an inhibitor of mammalian target of rapamycin complex 1 (mTORC1), in LDMC-mediated endothelial cell dysfunction. Low-dose doxorubicin (DOX) treatment induced REDD1 expression in cultured vascular and lymphatic endothelial cells and subsequently repressed the mRNA expression of mTORC1-dependent translation of vascular endothelial growth factor receptor (Vegfr)-2/3, resulting in the inhibition of VEGF-mediated angiogenesis and lymphangiogenesis. These regulatory effects of DOX-induced REDD1 expression were additionally confirmed by loss- and gain-of-function studies. Furthermore, LDMC with DOX significantly suppressed tumor angiogenesis, lymphangiogenesis, vascular permeability, growth, and metastasis in B16 melanoma-bearing wild-type but not Redd1-deficient mice. Altogether, our findings indicate that REDD1 is a crucial determinant of LDMC-mediated functional dysregulation of tumor vascular and lymphatic endothelial cells by translational repression of Vegfr-2/3 transcripts, supporting the potential therapeutic properties of REDD1 in highly progressive or metastatic tumors.


Assuntos
Melanoma Experimental , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Regulação para Baixo , Doxorrubicina/farmacologia , Células Endoteliais/metabolismo , Linfangiogênese/fisiologia , Mamíferos/metabolismo , Melanoma Experimental/tratamento farmacológico , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
6.
Biomed Pharmacother ; 134: 111110, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33338749

RESUMO

Targeting the vascular endothelial growth factor (VEGF)/its receptor-2 (VEGFR-2) system has become a mainstay of treatment for many human diseases, including retinal diseases. We examined the therapeutic effect of recently developed N-acetylated Arg-Leu-Tyr-Glu (Ac-RLYE), a human plasminogen kringle-5 domain-derived VEGFR-2 antagonists, on the pathogenesis of diabetic retinopathy. Ac-RLYE inhibited VEGF-A-mediated VEGFR-2 activation and endothelial nitric oxide synthase (eNOS)-derived NO production in the retinas of diabetic mice. In addition, Ac-RLYE prevented the disruption of adherens and tight junctions and vascular leakage by inhibiting S-nitrosylation of ß-catenin and tyrosine nitration of p190RhoGAP in the retinal vasculature of diabetic mice. Peptide treatment preserved the pericyte coverage of retinal capillaries by upregulating angiopoietin-2. These results suggest that Ac-RLYE potentially prevents blood-retinal barrier breakdown and vascular leakage by antagonizing VEGFR-2; Ac-RLYE can be used as a potential therapeutic drug for the treatment of diabetic retinopathy.


Assuntos
Inibidores da Angiogênese/farmacologia , Barreira Hematorretiniana/efeitos dos fármacos , Retinopatia Diabética/tratamento farmacológico , Oligopeptídeos/farmacologia , Vasos Retinianos/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Junções Aderentes/patologia , Animais , Barreira Hematorretiniana/metabolismo , Barreira Hematorretiniana/patologia , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Transdução de Sinais , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
7.
PLoS Negl Trop Dis ; 14(12): e0008998, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370333

RESUMO

Clonorchiasis caused by Clonorchis sinensis is endemic in East Asia; approximately 15 million people have been infected thus far. To diagnose the infection, serodiagnostic tests with excellent functionality should be performed. First, 607 expressed sequence tags encoding polypeptides with a secretory signal were expressed into recombinant proteins using an in vitro translation system. By protein array-based screening using C. sinensis-infected sera, 18 antigen candidate proteins were selected and assayed for cross-reactivity against Opisthorchis viverrini-infected sera. Of the six antigenic proteins selected, four were synthesized on large scale in vitro and evaluated for antigenicity against the flukes-infected human sera using ELISA. CsAg17 antigen showed the highest sensitivity (77.1%) and specificity (71.2%). The sensitivity and specificity of the bacterially produced CsAg17-28GST fusion antigen was similar to those of CsAg17 antigen. CsAg17 antigen can be used to develop point-of-care serodiagnostic tests for clonorchiasis.


Assuntos
Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/imunologia , Clonorquíase/diagnóstico , Clonorchis sinensis/imunologia , Animais , Clonorchis sinensis/genética , Reações Cruzadas/imunologia , Ensaio de Imunoadsorção Enzimática , Peixes/parasitologia , Humanos , Imunoglobulina G/sangue , Opisthorchis/imunologia , Testes Imediatos , Proteogenômica , Alimentos Crus/parasitologia , Sensibilidade e Especificidade , Testes Sorológicos
8.
Acta Biomater ; 118: 32-43, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33035695

RESUMO

Due to their short half-lives, repeated administration of anti-hyperglycemic drugs can cause pain, discomfort, tissue damage, and infection in diabetic patients. Therefore, there is a need to develop long-term drug delivery systems to treat diabetes and its complications. C-peptide can prevent diabetic complications, including diabetic vasculopathy, but its clinical application is limited by its short half-life. Here, we developed K9-C-peptide (human C-peptide conjugated to an elastin-like biopolymer) and investigated its long-term influence on hyperglycemia-induced vascular dysfunction using an aortic endothelium model in diabetic mice. Using pharmacokinetics and in vivo imaging, we found that subcutaneously injected K9-C-peptide formed a hydrogel depot that slowly released human C-peptide into the blood circulation for 19 days. Administration of K9-C-peptide, human C-peptide, or K8 polypeptide had no effect on body weight or blood glucose levels. The slow release of C-peptide from K9-C-peptide hydrogels provided prolonged prevention of oxidative stress, inflammatory responses, and endothelial apoptosis in a hyperglycemia-induced vascular dysfunction model using the diabetic mouse aorta. Subcutaneous administration of unbound human C-peptide and K8 polypeptide were used as negative controls and had no effects. These results suggest that K9-C-peptide is suitable for the long-term delivery of human C-peptide for treating vascular dysfunction in diabetic patients.


Assuntos
Diabetes Mellitus Experimental , Elastina , Animais , Aorta , Biopolímeros , Peptídeo C , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Endotélio Vascular , Humanos , Hidrogéis/farmacologia , Camundongos
9.
Exp Mol Med ; 52(8): 1298-1309, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770080

RESUMO

Endothelial progenitor cell (EPC) dysfunction impairs vascular function and remodeling in inflammation-associated diseases, including preeclampsia. However, the underlying mechanism of this inflammation-induced dysfunction remains unclear. In the present study, we found increases in TNF-α and miR-31/155 levels and reduced numbers of circulating EPCs in patients with preeclampsia. Patient-derived mononuclear cells (MNCs) cultured in autologous serum had decreased endothelial nitric oxide synthase (eNOS) expression, nitric oxide production, and differentiation into EPCs with angiogenic potential, and these effects were inhibited by a TNF-α-neutralizing antibody and miR-31/155 inhibitors. Moreover, TNF-α treatment of normal MNCs increased miR-31/155 biogenesis, decreased eNOS expression, reduced EPC differentiation, and impaired angiogenic potential. The TNF-α-induced impairment of EPC differentiation and function was rescued by NF-κB p65 knockdown or miR-31/155 inhibitors. In addition, treatment of MNCs with synthetic miR-31/155 or an eNOS inhibitor mimicked the inhibitory effects of TNF-α on eNOS expression and EPC functions. Moreover, transplantation of EPCs that had been differentiated from TNF-α-treated MNCs decreased neovascularization and blood perfusion in ischemic mouse hindlimbs compared with those of normally differentiated EPCs. These findings suggest that NF-κB activation is required for TNF-α-induced impairment of EPC mobilization, differentiation, and function via miR-31/155 biogenesis and eNOS downregulation. Our data provide a new role for NF-κB-dependent miR-31/155 in EPC dysfunction under the pathogenic conditions of inflammation-associated vascular diseases, including preeclampsia.


Assuntos
Células Progenitoras Endoteliais/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Diferenciação Celular/genética , Regulação para Baixo/genética , Células Progenitoras Endoteliais/patologia , Feminino , Membro Posterior/irrigação sanguínea , Humanos , Isquemia/patologia , Masculino , Camundongos Nus , MicroRNAs/sangue , MicroRNAs/genética , Neovascularização Fisiológica/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/genética , Gravidez , Fator de Necrose Tumoral alfa/sangue
10.
Biochem Pharmacol ; 178: 114052, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32446885

RESUMO

Midazolam is an anesthetic agent commonly used for anesthesia and sedation in surgery. However, there is no information on the role of midazolam in hyperglycemia-induced cancer metastasis to date. In this study, we investigated the effects of midazolam on inhibiting metastases in the lungs of diabetic mice and on human pulmonary microvascular endothelial cells (HPMVECs). Subcutaneous injection of midazolam inhibited hyperglycemia-induced cancer metastasis in the lungs of diabetic mice. Midazolam also prevented the generation of ROS, activation of TGase, and subsequent vascular leakage in the lungs of diabetic mice. Furthermore, in vitro studies with HPMVECs confirmed that midazolam inhibited VEGF-induced intracellular events including ROS generation, TGase activation, and disruption of vascular endothelial-cadherins, thus preventing the permeability of endothelial cells. Notably, midazolam had no direct effect on the migration or proliferation of melanoma cells, instead acting upon endothelial cells. The midazolam-mediated inhibition of VEGF-induced intracellular events was reversed by treatment with the GABAA receptor antagonist flumazenil. These findings suggest that midazolam prevents hyperglycemia-induced cancer metastasis by inhibiting VEGF-induced intracellular events and subsequent vascular leakage via the GABAA receptors in the lungs of diabetic mice.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Midazolam/uso terapêutico , Adjuvantes Anestésicos/uso terapêutico , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Relação Dose-Resposta a Droga , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Exp Mol Med ; 52(1): 56-65, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31956269

RESUMO

The efficient and reproducible derivation and maturation of multipotent hematopoietic progenitors from human pluripotent stem cells (hPSCs) requires the recapitulation of appropriate developmental stages and the microenvironment. Here, using serum-, xeno-, and feeder-free stepwise hematopoietic induction protocols, we showed that short-term and high-concentration treatment of hPSCs with bone morphogenetic protein 4 (BMP4) strongly promoted early mesoderm induction followed by increased hematopoietic commitment. This method reduced variations in hematopoietic differentiation among hPSC lines maintained under chemically defined Essential 8 medium compared to those maintained under less-defined mTeSR medium. We also found that perivascular niche cells (PVCs) significantly augmented the production of hematopoietic cells via paracrine signaling mechanisms only when they were present during the hematopoietic commitment phase. A protein array revealed 86 differentially expressed (>1.5-fold) secretion factors in PVC-conditioned medium compared with serum-free control medium, of which the transforming growth factor-ß inducible gene H3 significantly increased the number of hematopoietic colony-forming colonies. Our data suggest that BMP4 and PVCs promote the hematopoietic differentiation of hPSCs in a differentiation stage-specific manner. This will increase our understanding of hematopoietic development and expedite the development of hPSC-derived blood products for therapeutic use.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular/fisiologia , Hematopoese/fisiologia , Células-Tronco Pluripotentes/metabolismo , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Humanos , Mesoderma/metabolismo , Mesoderma/fisiologia , Células-Tronco Pluripotentes/fisiologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo
12.
Toxicol Appl Pharmacol ; 384: 114799, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678606

RESUMO

The present study investigated the vasorelaxant effects of sitagliptin, which is a dipeptidyl peptidase-4 (DPP-4) inhibitor in aortic rings pre-contracted with phenylephrine (Phe). Sitagliptin induced vasorelaxation in a concentration-dependent manner but the inhibition of voltage-dependent K+ (Kv) channels by pretreatment with 4-aminopyridine (4-AP) effectively reduced this effect. By contrast, the inhibition of inward rectifier K+ (Kir) channels by pretreatment with barium (Ba2+), large-conductance calcium (Ca2+)-activated K+ (BKCa) channels with paxilline, and adenosine triphosphate (ATP)-sensitive K+ (KATP) channels with glibenclamide did not change this effect. Although the application of SQ 22536, which is an adenylyl cyclase inhibitor, also did not change this effect, treatment with KT 5720, a protein kinase A (PKA) inhibitor, effectively reduced the vasorelaxant effects of sitagliptin. ODQ, which is a guanylyl cyclase inhibitor, and KT 5823, a protein kinase G (PKG) inhibitor, did not impact the effect. Furthermore, neither the inhibition of Ca2+ channels by pretreatment with nifedipine nor the inhibition of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pumps by pretreatment with thapsigargin changed the effect. Similarly, the effects of sitagliptin were not altered by eliminating the endothelium, by pretreatment with a nitric oxide (NO) synthase inhibitor (L-NAME), or by inhibition of small- and intermediate-conductance Ca2+-activated K+ channels (SKCa and IKCa) using apamin and TRAM-34. Taken together, these results suggest that sitagliptin induces vasorelaxation by inhibiting both membrane potential (Em)-dependent and -independent vasoconstriction and activating PKA and Kv channels independently of PKG signaling pathways, other K+ channels, SERCA pumps, and the endothelium.


Assuntos
Inibidores da Dipeptidil Peptidase IV/efeitos adversos , Endotélio Vascular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fosfato de Sitagliptina/efeitos adversos , Vasodilatação/efeitos dos fármacos , Animais , Aorta Torácica , Apamina/farmacologia , Carbazóis/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Endotélio Vascular/fisiologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Fenilefrina/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Pirazóis/farmacologia , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Vasoconstrição/efeitos dos fármacos
13.
Mol Pharmacol ; 96(6): 692-701, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31594790

RESUMO

The tetrapeptide Arg-Leu-Tyr-Glu (RLYE), a vascular endothelial growth factor (VEGF) receptor-2 antagonist, has been used previously either alone or in combination with chemotherapeutic drugs for treating colorectal cancer in a mouse model. We analyzed the half-life of the peptide and found that because of degradation by aminopeptidases B and N, it had a short half-life of 1.2 hours in the serum. Therefore, to increase the stability and potency of the peptide, we designed the modified peptide, N-terminally acetylated RLYE (Ac-RLYE), which had a strongly stabilized half-life of 8.8 hours in serum compared with the original parent peptide. The IC50 value of Ac-RLYE for VEGF-A-induced endothelial cell migration decreased to approximately 37.1 pM from 89.1 pM for the parent peptide. Using a mouse xenograft tumor model, we demonstrated that Ac-RLYE was more potent than RLYE in inhibiting tumor angiogenesis and growth, improving vascular integrity and normalization through enhanced endothelial cell junctions and pericyte coverage of the tumor vasculature, and impeding the infiltration of macrophages into tumor and their polarization to the M2 phenotype. Furthermore, combined treatment of Ac-RLYE and irinotecan exhibited synergistic effects on M1-like macrophage activation and apoptosis and growth inhibition of tumor cells. These findings provide evidence that the N-terminal acetylation augments the therapeutic effect of RLYE in solid tumors via inhibition of tumor angiogenesis, improvement of tumor vessel integrity and normalization, and enhancement of the livery and efficacy of the coadministered chemotherapeutic drugs. SIGNIFICANCE STATEMENT: The results of this study demonstrate that the N-terminal acetylation of the tetrapeptide RLYE (Ac-RLYE), a novel vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor, significantly improves its serum stability, antiangiogenic activity, and vascular normalizing potency, resulting in enhanced therapeutic effect on solid tumors. Furthermore, the combined treatment of Ac-RLYE with the chemotherapeutic drug, irinotecan, synergistically enhanced its antitumor efficacy by improving the perfusion and delivery of the drug into the tumors and stimulating the conversion of the tumor-associated macrophages to an immunostimulatory M1-like antitumor phenotype.


Assuntos
Antineoplásicos/administração & dosagem , Neovascularização Patológica/sangue , Neovascularização Patológica/tratamento farmacológico , Oligopeptídeos/administração & dosagem , Peptídeo Hidrolases/sangue , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Células HCT116 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Nus , Estabilidade Proteica/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
14.
Life Sci ; 233: 116711, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31374233

RESUMO

AIMS: Insulin is a central peptide hormone required for carbohydrate metabolism; however, its role in diabetes-associated pulmonary disease is unknown. Here, we investigated the preventative effect of insulin against hyperglycemia-induced pulmonary vascular leakage and its molecular mechanism of action in the lungs of diabetic mice. MAIN METHODS: Vascular endothelial growth factor (VEGF) activated transglutaminase 2 (TGase2) by sequentially elevating intracellular Ca2+ and reactive oxygen species (ROS) levels in primary human pulmonary microvascular endothelial cells (HPMVECs). KEY FINDINGS: Insulin inhibited VEGF-induced TGase2 activation, but did not affect intracellular Ca2+ elevation and ROS generation. Insulin prevented VEGF-induced vascular leakage by inhibiting TGase2-mediated c-Src phosphorylation, disassembly of VE-cadherin and ß-catenin, and stress fiber formation. Insulin replacement therapy prevented hyperglycemia-induced TGase2 activation, but not ROS generation, in the lungs of diabetic mice. Insulin also prevented vascular leakage and cancer metastasis in the diabetic lung. Notably, vascular leakage was not detectable in the lungs of TGase2-null (Tgm2-/-) diabetic mice. SIGNIFICANCE: These findings demonstrate that insulin prevents hyperglycemia-induced pulmonary vascular leakage in diabetic mice by inhibiting VEGF-induced TGase2 activation rather than ROS generation.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Proteínas de Ligação ao GTP/antagonistas & inibidores , Hemorragia/prevenção & controle , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Pneumopatias/prevenção & controle , Transglutaminases/antagonistas & inibidores , Animais , Proteínas de Ligação ao GTP/fisiologia , Hemorragia/etiologia , Hemorragia/patologia , Humanos , Pneumopatias/etiologia , Pneumopatias/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases/fisiologia , Células Tumorais Cultivadas
15.
Macromol Biosci ; 19(9): e1900129, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31310433

RESUMO

C-peptide has emerged as a potential drug for treating diabetic complications. However, clinical application of C-peptide is limited by its short half-life during circulation and costly synthesis methods. To overcome these limitations, a biocompatible and thermosensitive biopolymer-C-peptide conjugate composed of human C-peptide genetically conjugated at the C-terminus of nine repeats of lysine-containing elastin-like polypeptide (K9-C-peptide) is generated. K9-C-peptide exhibits reversible thermal phase behavior with a transition temperature dependent on polypeptide concentration. Degradation of K9-C-peptide hydrogel depends on the concentration of four cleavage enzymes as well as the reaction time and frequency of treatments with elastase-2. The preventive effect of K9-C-peptide against high glucose-induced human aortic endothelial cell dysfunction is further investigated. K9-C-peptide inhibits high glucose-induced intracellular reactive oxygen species generation, transglutaminase 2 activation, and apoptosis, similar to the inhibitory effects of human C-peptide. Thus, K9-C-peptide is a potential drug depot for the sustained delivery of C-peptide to treat diabetic complications.


Assuntos
Biopolímeros/farmacologia , Peptídeo C/farmacologia , Células Endoteliais/patologia , Glucose/toxicidade , Temperatura , Sequência de Aminoácidos , Apoptose/efeitos dos fármacos , Peptídeo C/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Ativação Enzimática/efeitos dos fármacos , Proteínas de Ligação ao GTP/metabolismo , Humanos , Peptídeo Hidrolases/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Proteólise/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transglutaminases/metabolismo
16.
Exp Mol Med ; 51(2): 1-12, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30765689

RESUMO

Vascular smooth muscle cells (VSMCs) play an important role in maintaining vascular function. Inflammation-mediated VSMC dysfunction leads to atherosclerotic intimal hyperplasia and preeclamptic hypertension; however, the underlying mechanisms are not clearly understood. We analyzed the expression levels of microRNA-155 (miR-155) in cultured VSMCs, mouse vessels, and clinical specimens and then assessed its role in VSMC function. Treatment with tumor necrosis factor-α (TNF-α) elevated miR-155 biogenesis in cultured VSMCs and vessel segments, which was prevented by NF-κB inhibition. MiR-155 expression was also increased in high-fat diet-fed ApoE-/- mice and in patients with atherosclerosis and preeclampsia. The miR-155 levels were inversely correlated with soluble guanylyl cyclase ß1 (sGCß1) expression and nitric oxide (NO)-dependent cGMP production through targeting the sGCß1 transcript. TNF-α-induced miR-155 caused VSMC phenotypic switching, which was confirmed by the downregulation of VSMC-specific marker genes, suppression of cell proliferation and migration, alterations in cell morphology, and NO-induced vasorelaxation. These events were mitigated by miR-155 inhibition. Moreover, TNF-α did not cause VSMC phenotypic modulation and limit NO-induced vasodilation in aortic vessels of miR-155-/- mice. These findings suggest that NF-κB-induced miR-155 impairs the VSMC contractile phenotype and NO-mediated vasorelaxation by downregulating sGCß1 expression. These data suggest that NF-κB-responsive miR-155 is a novel negative regulator of VSMC functions by impairing the sGC/cGMP pathway, which is essential for maintaining the VSMC contractile phenotype and vasorelaxation, offering a new therapeutic target for the treatment of atherosclerosis and preeclampsia.


Assuntos
MicroRNAs/genética , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , GMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Fenótipo , Interferência de RNA , Guanilil Ciclase Solúvel/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
17.
Tuberc Respir Dis (Seoul) ; 82(2): 133-142, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29926548

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis involves irreversible alveolar destruction. Although alveolar epithelial type II cells are key functional participants within the lung parenchyma, how epithelial cells are affected upon bleomycin (BLM) exposure remains unknown. In this study, we determined whether BLM could induce cell cycle arrest via regulation of Schlafen (SLFN) family genes, a group of cell cycle regulators known to mediate growth-inhibitory responses and apoptosis in alveolar epithelial type II cells. METHODS: Mouse AE II cell line MLE-12 were exposed to 1-10 µg/mL BLM and 0.01-100 µM baicalein (Bai), a G1/G2 cell cycle inhibitor, for 24 hours. Cell viability and levels of pro-inflammatory cytokines were analyzed by MTT and enzyme-linked immunosorbent assay, respectively. Apoptosis-related gene expression was evaluated by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). Cellular morphology was determined after DAPI and Hoechst 33258 staining. To verify cell cycle arrest, propidium iodide (PI) staining was performed for MLE-12 after exposure to BLM. RESULTS: BLM decreased the proliferation of MLE-12 cells. However, it significantly increased expression levels of interleukin 6, tumor necrosis factor α, and transforming growth factor ß1. Based on Hoechst 33258 staining, BLM induced condensation of nuclear and fragmentation. Based on DAPI and PI staining, BLM significantly increased the size of nuclei and induced G2/M phase cell cycle arrest. Results of qRT-PCR analysis revealed that BLM increased mRNA levels of BAX but decreased those of Bcl2. In addition, BLM/Bai increased mRNA levels of p53, p21, SLFN1, 2, 4 of Schlafen family. CONCLUSION: BLM exposure affects pulmonary epithelial type II cells, resulting in decreased proliferation possibly through apoptotic and cell cycle arrest associated signaling.

18.
FASEB J ; 33(1): 750-762, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30020832

RESUMO

C-peptide has a beneficial effect against diabetic complications, but its role in hyperglycemia-induced metastasis is unknown. We investigated hyperglycemia-mediated pulmonary vascular leakage and metastasis and C-peptide inhibition of these molecular events using human pulmonary microvascular endothelial cells (HPMVECs) and streptozotocin-induced diabetic mice. VEGF, which is elevated in the lungs of diabetic mice, activated transglutaminase 2 (TGase2) in HPMVECs by sequential elevation of intracellular Ca2+ and reactive oxygen species (ROS) levels. VEGF also induced vascular endothelial (VE)-cadherin disruption and increased the permeability of endothelial cells, both of which were prevented by the TGase inhibitors monodansylcadaverine and cystamine or TGM2-specific small interfering RNA. C-peptide prevented VEGF-induced VE-cadherin disruption and endothelial cell permeability through inhibiting ROS-mediated activation of TGase2. C-peptide supplementation inhibited hyperglycemia-induced ROS generation and TGase2 activation and prevented vascular leakage and metastasis in the lungs of diabetic mice. The role of TGase2 in hyperglycemia-induced pulmonary vascular leakage and metastasis was further demonstrated in diabetic Tgm2-/- mice. These findings demonstrate that hyperglycemia induces metastasis, and C-peptide prevents the hyperglycemia-induced metastasis in the lungs of diabetic mice by inhibiting VEGF-induced TGase2 activation and subsequent vascular leakage.-Jeon, H.-Y., Lee, Y.-J., Kim, Y.-S., Kim, S.-Y., Han, E.-T., Park, W. S., Hong, S.-H., Kim, Y.-M., Ha, K.-S. Proinsulin C-peptide prevents hyperglycemia-induced vascular leakage and metastasis of melanoma cells in the lungs of diabetic mice.


Assuntos
Peptídeo C/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Hiperglicemia/complicações , Neoplasias Pulmonares/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Animais , Apoptose , Feminino , Proteínas de Ligação ao GTP/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Proteína 2 Glutamina gama-Glutamiltransferase , Espécies Reativas de Oxigênio/metabolismo , Transglutaminases/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Mol Cells ; 41(11): 971-978, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30396237

RESUMO

The stem cell factor (SCF)/c-KIT axis plays an important role in the hematopoietic differentiation of human pluripotent stem cells (hPSCs), but its regulatory mechanisms involving microRNAs (miRs) are not fully elucidated. Here, we demonstrated that supplementation with SCF increases the hematopoietic differentiation of hPSCs via the interaction with its receptor tyrosine kinase c-KIT, which is modulated by miR-221 and miR-222. c-KIT is comparably expressed in undifferentiated human embryonic and induced pluripotent stem cells. The inhibition of SCF signaling via treatment with a c-KIT antagonist (imatinib) during hPSC-derived hematopoiesis resulted in reductions in the yield and multi-lineage potential of hematopoietic progenitors. We found that the transcript levels of miR-221 and miR-222 targeting c-KIT were significantly lower in the pluripotent state than they were in terminally differentiated somatic cells. Furthermore, suppression of miR-221 and miR-222 in undifferentiated hPSC cultures induced more hematopoiesis by increasing c-KIT expression. Collectively, our data implied that the modulation of c-KIT by miRs may provide further potential strategies to expedite the generation of functional blood cells for therapeutic approaches and the study of the cellular machinery related to hematologic malignant diseases such as leukemia.


Assuntos
MicroRNAs/genética , Células-Tronco Pluripotentes/fisiologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Diferenciação Celular , Células Cultivadas , Hematopoese , Humanos , Mesilato de Imatinib/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , Transdução de Sinais , Fator de Células-Tronco/metabolismo , Regulação para Cima
20.
J Biol Chem ; 293(49): 18989-19000, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30279269

RESUMO

Inflammatory cytokines, including tumor necrosis factor-α (TNFα), were elevated in patients with cardiovascular diseases and are also considered as crucial factors in the pathogenesis of preeclampsia; however, the underlying pathogenic mechanism has not been clearly elucidated. This study provides novel evidence that TNFα leads to endothelial dysfunction associated with hypertension and vascular remodeling in preeclampsia through down-regulation of endothelial nitric-oxide synthase (eNOS) by NF-κB-dependent biogenesis of microRNA (miR)-31-5p, which targets eNOS mRNA. In this study, we found that miR-31-5p was up-regulated in sera from patients with preeclampsia and in human endothelial cells treated with TNFα. TNFα-mediated induction of miR-31-5p was blocked by an NF-κB inhibitor and NF-κB p65 knockdown but not by mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase inhibitors, indicating that NF-κB is essential for biogenesis of miR-31-5p. The treatment of human endothelial cells with TNFα or miR-31-5p mimics decreased endothelial nitric-oxide synthase (eNOS) mRNA stability without affecting eNOS promoter activity, resulting in inhibition of eNOS expression and NO/cGMP production through blocking of the functional activity of the eNOS mRNA 3'-UTR. Moreover, TNFα and miR-31-5p mimic evoked endothelial dysfunction associated with defects in angiogenesis, trophoblastic invasion, and vasorelaxation in an ex vivo cultured model of human placental arterial vessels, which are typical features of preeclampsia. These results suggest that NF-κB-responsive miR-31-5p elicits endothelial dysfunction, hypertension, and vascular remodeling via post-transcriptional down-regulation of eNOS and is a molecular risk factor in the pathogenesis and development of preeclampsia.


Assuntos
Células Endoteliais/fisiologia , MicroRNAs/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Pré-Eclâmpsia/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Artérias/efeitos dos fármacos , Regulação para Baixo , Células Endoteliais/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/farmacologia , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Neovascularização Fisiológica , Placenta/irrigação sanguínea , Placenta/efeitos dos fármacos , Pré-Eclâmpsia/genética , Gravidez , Trofoblastos/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA