Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Elife ; 132024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656237

RESUMO

The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.


Assuntos
Pareamento Incorreto de Bases , DNA , Nucleossomos , Nucleossomos/metabolismo , Nucleossomos/química , Nucleossomos/genética , DNA/química , DNA/metabolismo , DNA/genética , Pareamento Incorreto de Bases/genética , Animais , Transferência Ressonante de Energia de Fluorescência , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xenopus laevis
2.
Elife ; 122024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497611

RESUMO

Eukaryotic gene expression is linked to chromatin structure and nucleosome positioning by ATP-dependent chromatin remodelers that establish and maintain nucleosome-depleted regions (NDRs) near transcription start sites. Conserved yeast RSC and ISW2 remodelers exert antagonistic effects on nucleosomes flanking NDRs, but the temporal dynamics of remodeler search, engagement, and directional nucleosome mobilization for promoter accessibility are unknown. Using optical tweezers and two-color single-particle imaging, we investigated the Brownian diffusion of RSC and ISW2 on free DNA and sparse nucleosome arrays. RSC and ISW2 rapidly scan DNA by one-dimensional hopping and sliding, respectively, with dynamic collisions between remodelers followed by recoil or apparent co-diffusion. Static nucleosomes block remodeler diffusion resulting in remodeler recoil or sequestration. Remarkably, both RSC and ISW2 use ATP hydrolysis to translocate mono-nucleosomes processively at ~30 bp/s on extended linear DNA under tension. Processivity and opposing push-pull directionalities of nucleosome translocation shown by RSC and ISW2 shape the distinctive landscape of promoter chromatin.


Assuntos
Cromatina , Nucleossomos , Trifosfato de Adenosina/metabolismo , Cromatina/metabolismo , DNA/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Translocação Genética
3.
Science ; 383(6689): 1374-1379, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513010

RESUMO

Cells connect with their environment through surface receptors and use physical tension in receptor-ligand bonds for various cellular processes. Single-molecule techniques have revealed bond strength by measuring "rupture force," but it has long been recognized that rupture force is dependent on loading rate-how quickly force is ramped up. Thus, the physiological loading rate needs to be measured to reveal the mechanical strength of individual bonds in their functional context. We have developed an overstretching tension sensor (OTS) to allow more accurate force measurement in physiological conditions with single-molecule detection sensitivity even in mechanically active regions. We used serially connected OTSs to show that the integrin loading rate ranged from 0.5 to 4 piconewtons per second and was about three times higher in leukocytes than in epithelial cells.


Assuntos
Técnicas Biossensoriais , Adesão Celular , Integrinas , Mecanotransdução Celular , Adesão Celular/fisiologia , Integrinas/química , Integrinas/metabolismo , Imagem Individual de Molécula , Humanos , Linhagem Celular Tumoral , Resistência à Tração , Sondas de Oligonucleotídeos , Hibridização de Ácido Nucleico
4.
Cell Rep Methods ; 3(10): 100623, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37883922

RESUMO

In this issue of Cell Reports Methods, Molina and colleagues use in vitro single-molecule DNA flow-stretching to demonstrate the severe effects of appending a short lysine-cysteine-lysine (KCK) tag on the Bacillus subtilis ParB protein. This assay could be further utilized to evaluate the impact of other tags on DNA-binding proteins.


Assuntos
DNA , Lisina , Lisina/metabolismo , DNA/metabolismo , Bacillus subtilis/genética , Proteínas de Ligação a DNA/genética
5.
Nucleic Acids Res ; 51(19): 10326-10343, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37738162

RESUMO

Chromatin remodelers use a helicase-type ATPase motor to shift DNA around the histone core. Although not directly reading out the DNA sequence, some chromatin remodelers exhibit a sequence-dependent bias in nucleosome positioning, which presumably reflects properties of the DNA duplex. Here, we show how nucleosome positioning by the Chd1 remodeler is influenced by local DNA perturbations throughout the nucleosome footprint. Using site-specific DNA cleavage coupled with next-generation sequencing, we show that nucleosomes shifted by Chd1 can preferentially localize DNA perturbations - poly(dA:dT) tracts, DNA mismatches, and single-nucleotide insertions - about a helical turn outside the Chd1 motor domain binding site, super helix location 2 (SHL2). This phenomenon occurs with both the Widom 601 positioning sequence and the natural +1 nucleosome sequence from the Saccharomyces cerevisiae SWH1 gene. Our modeling indicates that localization of DNA perturbations about a helical turn outward from SHL2 results from back-and-forth sliding due to remodeler action on both sides of the nucleosome. Our results also show that barrier effects from DNA perturbations can be extended by the strong phasing of nucleosome positioning sequences.


Assuntos
Proteínas de Ligação a DNA , Nucleossomos , Proteínas de Saccharomyces cerevisiae , Trifosfato de Adenosina/química , Montagem e Desmontagem da Cromatina , Nucleossomos/química , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo
6.
Nat Methods ; 20(5): 706-713, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024653

RESUMO

Discovery of off-target CRISPR-Cas activity in patient-derived cells and animal models is crucial for genome editing applications, but currently exhibits low sensitivity. We demonstrate that inhibition of DNA-dependent protein kinase catalytic subunit accumulates the repair protein MRE11 at CRISPR-Cas-targeted sites, enabling high-sensitivity mapping of off-target sites to positions of MRE11 binding using chromatin immunoprecipitation followed by sequencing. This technique, termed DISCOVER-Seq+, discovered up to fivefold more CRISPR off-target sites in immortalized cell lines, primary human cells and mice compared with previous methods. We demonstrate applicability to ex vivo knock-in of a cancer-directed transgenic T cell receptor in primary human T cells and in vivo adenovirus knock-out of cardiovascular risk gene PCSK9 in mice. Thus, DISCOVER-Seq+ is, to our knowledge, the most sensitive method to-date for discovering off-target genome editing in vivo.


Assuntos
Sistemas CRISPR-Cas , Pró-Proteína Convertase 9 , Humanos , Animais , Camundongos , Pró-Proteína Convertase 9/genética , Edição de Genes/métodos , Genoma
7.
Mol Cell Biol ; 43(4): 143-156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37096556

RESUMO

The smallest subunit of the human Origin Recognition Complex, hOrc6, is required for DNA replication progression and plays an important role in mismatch repair (MMR) during S-phase. However, the molecular details of how hOrc6 regulates DNA replication and DNA damage response remain to be elucidated. Orc6 levels are elevated upon specific types of genotoxic stress, and it is phosphorylated at Thr229, predominantly during S-phase, in response to oxidative stress. Many repair pathways, including MMR, mediate oxidative DNA damage repair. Defects in MMR are linked to Lynch syndrome, predisposing patients to many cancers, including colorectal cancer. Orc6 levels are known to be elevated in colorectal cancers. Interestingly, tumor cells show reduced hOrc6-Thr229 phosphorylation compared to adjacent normal mucosa. Further, elevated expression of wild-type and the phospho-dead forms of Orc6 results in increased tumorigenicity, implying that in the absence of this "checkpoint" signal, cells proliferate unabated. Based on these results, we propose that DNA-damage-induced hOrc6-pThr229 phosphorylation during S-phase facilitates ATR signaling in the S-phase, halts fork progression, and enables assembly of repair factors to mediate efficient repair to prevent tumorigenesis. Our study provides novel insights into how hOrc6 regulates genome stability.


Assuntos
Replicação do DNA , Complexo de Reconhecimento de Origem , Humanos , Fosforilação , Complexo de Reconhecimento de Origem/genética , Complexo de Reconhecimento de Origem/metabolismo , Fase S , Instabilidade Genômica , Dano ao DNA
8.
Trends Genet ; 39(7): 560-574, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36967246

RESUMO

DNA double-strand breaks (DSBs) are one of the most genotoxic DNA lesions, driving a range of pathological defects from cancers to immunodeficiencies. To combat genomic instability caused by DSBs, evolution has outfitted cells with an intricate protein network dedicated to the rapid and accurate repair of these lesions. Pioneering studies have identified and characterized many crucial repair factors in this network, while the advent of genome manipulation tools like clustered regularly interspersed short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) has reinvigorated interest in DSB repair mechanisms. This review surveys the latest methodological advances and biological insights gained by utilizing Cas9 as a precise 'damage inducer' for the study of DSB repair. We highlight rapidly inducible Cas9 systems that enable synchronized and efficient break induction. When combined with sequencing and genome-specific imaging approaches, inducible Cas9 systems greatly expand our capability to spatiotemporally characterize cellular responses to DSB at specific genomic coordinates, providing mechanistic insights that were previously unobtainable.


Assuntos
Sistemas CRISPR-Cas , Quebras de DNA de Cadeia Dupla , Sistemas CRISPR-Cas/genética , Reparo do DNA/genética , Reparo do DNA por Junção de Extremidades , DNA/genética , Edição de Genes/métodos
9.
PNAS Nexus ; 2(1): pgac270, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36712940

RESUMO

The presence of senescent cells within tissues has been functionally linked to malignant transformations. Here, using tension-gauge tethers technology, particle-tracking microrheology, and quantitative microscopy, we demonstrate that senescent-associated secretory phenotype (SASP) derived from senescent fibroblasts impose nuclear lobulations and volume shrinkage on malignant cells, which stems from the loss of RhoA/ROCK/myosin II-based cortical tension. This loss in cytoskeletal tension induces decreased cellular contractility, adhesion, and increased mechanical compliance. These SASP-induced morphological changes are, in part, mediated by Lamin A/C. These findings suggest that SASP induces defective outside-in mechanotransduction from actomyosin fibers in the cytoplasm to the nuclear lamina, thereby triggering a cascade of biophysical and biomolecular changes in cells that associate with malignant transformations.

10.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168376

RESUMO

Hearing and balance rely on the conversion of a mechanical stimulus into an electrical signal, a process known as mechanosensory transduction (MT). In vertebrates, this process is accomplished by an MT complex that is located in hair cells of the inner ear. While the past three decades of research have identified many subunits that are important for MT and revealed interactions between these subunits, the composition and organization of a functional complex remains unknown. The major challenge associated with studying the MT complex is its extremely low abundance in hair cells; current estimates of MT complex quantity range from 3-60 attomoles per cochlea or utricle, well below the detection limit of most biochemical assays that are used to characterize macromolecular complexes. Here we describe the optimization of two single molecule assays, single molecule pull-down (SiMPull) and single molecule array (SiMoA), to study the composition and quantity of native mouse MT complexes. We demonstrate that these assays are capable of detecting and quantifying low attomoles of the native MT subunits protocadherin-15 (PCDH15) and lipoma HMGIC fusion partner-like protein 5 (LHFPL5). Our results illuminate the stoichiometry of PCDH15- and LHFPL5-containing complexes and establish SiMPull and SiMoA as productive methods for probing the abundance, composition, and arrangement of subunits in the native MT complex.

11.
Proc Natl Acad Sci U S A ; 119(36): e2202489119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037333

RESUMO

We used single-molecule picometer-resolution nanopore tweezers (SPRNT) to resolve the millisecond single-nucleotide steps of superfamily 1 helicase PcrA as it translocates on, or unwinds, several kilobase-long DNA molecules. We recorded more than two million enzyme steps under various assisting and opposing forces in diverse adenosine tri- and diphosphate conditions to comprehensively explore the mechanochemistry of PcrA motion. Forces applied in SPRNT mimic forces and physical barriers PcrA experiences in vivo, such as when the helicase encounters bound proteins or duplex DNA. We show how PcrA's kinetics change with such stimuli. SPRNT allows for direct association of the underlying DNA sequence with observed enzyme kinetics. Our data reveal that the underlying DNA sequence passing through the helicase strongly influences the kinetics during translocation and unwinding. Surprisingly, unwinding kinetics are not solely dominated by the base pairs being unwound. Instead, the sequence of the single-stranded DNA on which the PcrA walks determines much of the kinetics of unwinding.


Assuntos
DNA Helicases , Nucleotídeos , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , DNA Helicases/metabolismo , DNA de Cadeia Simples , Cinética
12.
Elife ; 112022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35876491

RESUMO

One-dimensional (1D) target search is a well-characterized phenomenon for many DNA-binding proteins but is poorly understood for chromatin remodelers. Herein, we characterize the 1D scanning properties of SWR1, a conserved yeast chromatin remodeler that performs histone exchange on +1 nucleosomes adjacent to a nucleosome-depleted region (NDR) at gene promoters. We demonstrate that SWR1 has a kinetic binding preference for DNA of NDR length as opposed to gene-body linker length DNA. Using single and dual color single-particle tracking on DNA stretched with optical tweezers, we directly observe SWR1 diffusion on DNA. We found that various factors impact SWR1 scanning, including ATP which promotes diffusion through nucleotide binding rather than ATP hydrolysis. A DNA-binding subunit, Swc2, plays an important role in the overall diffusive behavior of the complex, as the subunit in isolation retains similar, although faster, scanning properties as the whole remodeler. ATP-bound SWR1 slides until it encounters a protein roadblock, of which we tested dCas9 and nucleosomes. The median diffusion coefficient, 0.024 µm2/s, in the regime of helical sliding, would mediate rapid encounter of NDR-flanking nucleosomes at length scales found in cellular chromatin.


Assuntos
Nucleossomos , Proteínas de Saccharomyces cerevisiae , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Mol Cell ; 82(2): 304-314, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35063098

RESUMO

Owing to their unique abilities to manipulate, label, and image individual molecules in vitro and in cellulo, single-molecule techniques provide previously unattainable access to elementary biological processes. In imaging, single-molecule fluorescence resonance energy transfer (smFRET) and protein-induced fluorescence enhancement in vitro can report on conformational changes and molecular interactions, single-molecule pull-down (SiMPull) can capture and analyze the composition and function of native protein complexes, and single-molecule tracking (SMT) in live cells reveals cellular structures and dynamics. In labeling, the abilities to specifically label genomic loci, mRNA, and nascent polypeptides in cells have uncovered chromosome organization and dynamics, transcription and translation dynamics, and gene expression regulation. In manipulation, optical tweezers, integration of single-molecule fluorescence with force measurements, and single-molecule force probes in live cells have transformed our mechanistic understanding of diverse biological processes, ranging from protein folding, nucleic acids-protein interactions to cell surface receptor function.


Assuntos
Genômica/tendências , Imagem Molecular/tendências , Imagem Óptica/tendências , Imagem Individual de Molécula/tendências , Animais , Difusão de Inovações , Transferência Ressonante de Energia de Fluorescência/tendências , Humanos , Microscopia de Fluorescência/tendências , Proteômica/tendências
14.
Nat Commun ; 12(1): 6548, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772936

RESUMO

Multi-subunit ring-ATPases carry out a myriad of biological functions, including genome packaging in viruses. Though the basic structures and functions of these motors have been well-established, the mechanisms of ATPase firing and motor coordination are poorly understood. Here, using single-molecule fluorescence, we determine that the active bacteriophage T4 DNA packaging motor consists of five subunits of gp17. By systematically doping motors with an ATPase-defective subunit and selecting single motors containing a precise number of active or inactive subunits, we find that the packaging motor can tolerate an inactive subunit. However, motors containing one or more inactive subunits exhibit fewer DNA engagements, a higher failure rate in encapsidation, reduced packaging velocity, and increased pausing. These findings suggest a DNA packaging model in which the motor, by re-adjusting its grip on DNA, can skip an inactive subunit and resume DNA translocation, suggesting that strict coordination amongst motor subunits of packaging motors is not crucial for function.


Assuntos
Adenosina Trifosfatases/metabolismo , Empacotamento do Genoma Viral/fisiologia , Adenosina Trifosfatases/genética , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Empacotamento do DNA/genética , Empacotamento do DNA/fisiologia , DNA Viral/genética , Empacotamento do Genoma Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Montagem de Vírus/genética , Montagem de Vírus/fisiologia
15.
Mol Cell ; 80(4): 666-681.e8, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33159856

RESUMO

The RNA-binding protein fused in sarcoma (FUS) can form pathogenic inclusions in neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). Over 70 mutations in Fus are linked to ALS/FTLD. In patients, all Fus mutations are heterozygous, indicating that the mutant drives disease progression despite the presence of wild-type (WT) FUS. Here, we demonstrate that ALS/FTLD-linked FUS mutations in glycine (G) strikingly drive formation of droplets that do not readily interact with WT FUS, whereas arginine (R) mutants form mixed condensates with WT FUS. Remarkably, interactions between WT and G mutants are disfavored at the earliest stages of FUS nucleation. In contrast, R mutants physically interact with the WT FUS such that WT FUS recovers the mutant defects by reducing droplet size and increasing dynamic interactions with RNA. This result suggests disparate molecular mechanisms underlying ALS/FTLD pathogenesis and differing recovery potential depending on the type of mutation.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/patologia , Glicina/metabolismo , Mutação , Neuroblastoma/patologia , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/metabolismo , RNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Glicina/química , Glicina/genética , Humanos , Corpos de Inclusão , Neuroblastoma/genética , Neuroblastoma/metabolismo , Conformação Proteica , RNA/química , RNA/genética , Proteína FUS de Ligação a RNA/genética , Células Tumorais Cultivadas
16.
Biomedicines ; 8(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962144

RESUMO

Soft 3D-fibrin-gel selected tumor repopulating cells (TRCs) from the B16F1 melanoma cell line exhibit extraordinary self-renewal and tumor-regeneration capabilities. However, their biomarkers and gene regulatory features remain largely unknown. Here, we utilized the next-generation sequencing-based RNA sequencing (RNA-seq) technique to discover novel biomarkers and active gene regulatory features of TRCs. Systems biology analysis of RNA-seq data identified differentially expressed gene clusters, including the cell adhesion cluster, which subsequently identified highly specific and novel biomarkers, such as Col2a1, Ncam1, F11r, and Negr1. We validated the expression of these genes by real-time qPCR. The expression level of Col2a1 was found to be relatively low in TRCs but twenty-fold higher compared to the parental control cell line, thus making the biomarker very specific for TRCs. We validated the COL2A1 protein by immunofluorescence microscopy, showing a higher expression of COL2A1 in TRCs compared to parental control cells. KEGG pathway analysis showed the JAK/STAT, hypoxia, and Akt signaling pathways to be active in TRCs. Besides, the aerobic glycolysis pathway was found to be very active, indicating a typical Warburg Effect on highly tumorigenic cells. Together, our study revealed highly specific biomarkers and active cell signaling pathways of melanoma TRCs that can potentially target and neutralize TRCs.

17.
Biosens Bioelectron ; 165: 112389, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729511

RESUMO

In this study, we investigated the biophysical interaction between cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and CD80. CTLA-4 is a key molecule in immunosuppression, and CD80 is a costimulatory receptor promoting T cell activation. We observed that after cell-cell contact was established between breast cancer cells and antigen presenting cells (APCs), CTLA-4 expressed on the breast cancer cells bind to CD80 expressed on the APCs, and underwent trans-endocytosis to deplete CD80. Force measurement and live cell imaging revealed that upon binding to CD80, forces generated by breast cancer cells and transmitted via CTLA-4 were sufficiently strong to displace CD80 from the surface of APCs to be internalized by breast cancer cells. We further demonstrated that because of the force-dependent trans-endocytosis of CD80, the capacity of APCs to activate T cells was significantly attenuated. Furthermore, inhibiting force generation in cancer cells would increase the T cell activating capacity of APCs. Our results provide a possible mechanism behind the immunosuppression commonly seen in breast cancer patients, and may lead to a new strategy to restore anti-tumor immunity by inhibiting pathways of force-generation.


Assuntos
Técnicas Biossensoriais , Neoplasias da Mama , Antígeno B7-2 , Antígenos CD28 , Endocitose , Humanos , Ativação Linfocitária , Linfócitos T
18.
Nucleic Acids Res ; 48(13): 7545-7556, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32520325

RESUMO

While most SAM riboswitches strongly discriminate between SAM and SAH, the SAM/SAH riboswitch responds to both ligands with similar apparent affinities. We have determined crystal structures of the SAM/SAH riboswitch bound to SAH, SAM and other variant ligands at high resolution. The riboswitch forms an H-type pseudoknot structure with coaxial alignment of the stem-loop helix (P1) and the pseudoknot helix (PK). An additional three base pairs form at the non-open end of P1, and the ligand is bound at the interface between the P1 extension and the PK helix. The adenine nucleobase is stacked into the helix and forms a trans Hoogsteen-Watson-Crick base pair with a uridine, thus becoming an integral part of the helical structure. The majority of the specific interactions are formed with the adenosine. The methionine or homocysteine chain lies in the groove making a single hydrogen bond, and there is no discrimination between the sulfonium of SAM or the thioether of SAH. Single-molecule FRET analysis reveals that the riboswitch exists in two distinct conformations, and that addition of SAM or SAH shifts the population into a stable state that likely corresponds to the form observed in the crystal. A model for translational regulation is presented whereby in the absence of ligand the riboswitch is largely unfolded, lacking the PK helix so that translation can be initiated at the ribosome binding site. But the presence of ligand stabilizes the folded conformation that includes the PK helix, so occluding the ribosome binding site and thus preventing the initiation of translation.


Assuntos
Dobramento de RNA , Riboswitch , S-Adenosil-Homocisteína/química , S-Adenosilmetionina/química , Pareamento de Bases , Transferência Ressonante de Energia de Fluorescência , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
19.
Nucleic Acids Res ; 48(12): 6640-6653, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32449930

RESUMO

G-quadruplex (G4) DNA structures can form physical barriers within the genome that must be unwound to ensure cellular genomic integrity. Here, we report unanticipated roles for the Escherichia coli Rep helicase and RecA recombinase in tolerating toxicity induced by G4-stabilizing ligands in vivo. We demonstrate that Rep and Rep-X (an enhanced version of Rep) display G4 unwinding activities in vitro that are significantly higher than the closely related UvrD helicase. G4 unwinding mediated by Rep involves repetitive cycles of G4 unfolding and refolding fueled by ATP hydrolysis. Rep-X and Rep also dislodge G4-stabilizing ligands, in agreement with our in vivo G4-ligand sensitivity result. We further demonstrate that RecA filaments disrupt G4 structures and remove G4 ligands in vitro, consistent with its role in countering cellular toxicity of G4-stabilizing ligands. Together, our study reveals novel genome caretaking functions for Rep and RecA in resolving deleterious G4 structures.


Assuntos
DNA Helicases/química , Replicação do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Quadruplex G , Recombinases Rec A/química , Trifosfato de Adenosina/química , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Ligantes , Conformação de Ácido Nucleico , Recombinases Rec A/genética
20.
iScience ; 23(5): 101038, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32344376

RESUMO

Telomeres are maintained by telomerase or in a subset of cancer cells by a homologous recombination (HR)-based mechanism, Alternative Lengthening of Telomeres (ALT). The mechanisms regulating telomere-homeostasis in ALT cells remain unclear. We report that a replication initiator protein, Origin Recognition Complex-Associated (ORCA/LRWD1), by localizing at the ALT-telomeres, modulates HR activity. ORCA's localization to the ALT-telomeres is facilitated by its interaction to SUMOylated shelterin components. The loss of ORCA in ALT-positive cells elevates the levels of two mediators of HR, RPA and RAD51, and consistent with this, we observe increased ALT-associated promyelocytic leukemia body formation and telomere sister chromatid exchange. ORCA binds to RPA and modulates the association of RPA to telomeres. Finally, the loss of ORCA causes global chromatin decondensation, including at the telomeres. Our results demonstrate that ORCA acts as an inhibitor of HR by modulating RPA binding to ssDNA and inducing chromatin compaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA