Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Anal Chem ; 95(19): 7475-7486, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37126482

RESUMO

Sialic acid isomers attached in either α2,3 or α2,6 linkage to glycan termini confer distinct chemical, biological, and pathological properties, but they cannot be distinguished by mass differences in traditional mass spectrometry experiments. Multiple derivatization strategies have been developed to stabilize and facilitate the analysis of sialic acid isomers and their glycoconjugate carriers by high-performance liquid chromatography, capillary electrophoresis, and mass spectrometry workflows. Herein, a set of novel derivatization schemes are described that result in the introduction of bioorthogonal click chemistry alkyne or azide groups into α2,3- and α2,8-linked sialic acids. These chemical modifications were validated and structurally characterized using model isomeric sialic acid conjugates and model protein carriers. Use of an alkyne-amine, propargylamine, as the second amidation reagent effectively introduces an alkyne functional group into α2,3-linked sialic acid glycoproteins. In tissues, serum, and cultured cells, this allows for the detection and visualization of N-linked glycan sialic acid isomers by imaging mass spectrometry approaches. Formalin-fixed paraffin-embedded prostate cancer tissues and pancreatic cancer cell lines were used to characterize the numbers and distribution of alkyne-modified α2,3-linked sialic acid N-glycans. An azide-amine compound with a poly(ethylene glycol) linker was evaluated for use in histochemical staining. Formalin-fixed pancreatic cancer tissues were amidated with the azide amine, reacted with biotin-alkyne and copper catalyst, and sialic acid isomers detected by streptavidin-peroxidase staining. The direct chemical introduction of bioorthogonal click chemistry reagents into sialic acid-containing glycans and glycoproteins provides a new glycomic tool set to expand approaches for their detection, labeling, visualization, and enrichment.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Ácidos Siálicos/química , Polissacarídeos/química , Linhagem Celular Tumoral
2.
Front Oncol ; 13: 1135405, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124496

RESUMO

Introduction: Outcomes following tumor resection vary dramatically among patients with pancreatic ductal adenocarcinoma (PDAC). A challenge in defining predictive biomarkers is to discern within the complex tumor tissue the specific subpopulations and relationships that drive recurrence. Multiplexed immunofluorescence is valuable for such studies when supplied with markers of relevant subpopulations and analysis methods to sort out the intra-tumor relationships that are informative of tumor behavior. We hypothesized that the glycan biomarkers CA19-9 and STRA, which detect separate subpopulations of cancer cells, define intra-tumoral features associated with recurrence. Methods: We probed this question using automated signal thresholding and spatial cluster analysis applied to the immunofluorescence images of the STRA and CA19-9 glycan biomarkers in whole-block sections of PDAC tumors collected from curative resections. Results: The tumors (N = 22) displayed extreme diversity between them in the amounts of the glycans and in the levels of spatial clustering, but neither the amounts nor the clusters of the individual and combined glycans associated with recurrence. The combined glycans, however, marked divergent types of spatial clusters, alternatively only STRA, only CA19-9, or both. The co-occurrence of more than one cluster type within a tumor associated significantly with disease recurrence, in contrast to the independent occurrence of each type of cluster. In addition, intra-tumoral regions with heterogeneity in biomarker clusters spatially aligned with pathology-confirmed cancer cells, whereas regions with homogeneous biomarker clusters aligned with various non-cancer cells. Conclusion: Thus, the STRA and CA19-9 glycans are markers of distinct and co-occurring subpopulations of cancer cells that in combination are associated with recurrence. Furthermore, automated signal thresholding and spatial clustering provides a tool for quantifying intra-tumoral subpopulations that are informative of outcome.

3.
bioRxiv ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36711795

RESUMO

Outcomes following tumor resection vary dramatically among patients with pancreatic cancer. A challenge in defining predictive biomarkers is to discern within the complex tumor tissue the specific subpopulations and relationships that drive recurrence. Multiplexed immunofluorescence is valuable for such studies when supplied with markers of relevant subpopulations and analysis methods to sort out the intra-tumor relationships that are informative of tumor behavior. We hypothesized that the glycan biomarkers CA19-9 and STRA, which detect separate subpopulations of cancer cells, define intra-tumoral features associated with recurrence. We probed this question using automated signal thresholding and spatial cluster analysis applied to the immunofluorescence images of the STRA and CA19-9 glycan biomarkers in whole-block tumor sections. The tumors (N = 22) displayed extreme diversity between them in the amounts of the glycans and in the levels of spatial clustering, but neither the amounts nor the clusters of the individual and combined glycans associated with recurrence. The combined glycans, however, marked divergent types of spatial clusters, alternatively only STRA, only CA19-9, or both. The co-occurrence of more than one cluster type within a tumor associated significantly with disease recurrence, in contrast to the independent occurrence of each type of cluster. In addition, intra-tumoral regions with heterogeneity in biomarker clusters spatially aligned with pathology-confirmed cancer cells, whereas regions with homogeneous biomarker clusters aligned with various non-cancer cells. Thus, the STRA and CA19-9 glycans are markers of distinct and co-occurring subpopulations of cancer cells that in combination are associated with recurrence. Furthermore, automated signal thresholding and spatial clustering provides a tool for quantifying intra-tumoral subpopulations that are informative of outcome.

4.
Mol Cell Proteomics ; 20: 100012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581409

RESUMO

The early detection of pancreatic ductal adenocarcinoma (PDAC) is a complex clinical obstacle yet is key to improving the overall likelihood of patient survival. Current and prospective carbohydrate biomarkers carbohydrate antigen 19-9 (CA19-9) and sialylated tumor-related antigen (sTRA) are sufficient for surveilling disease progression yet are not approved for delineating PDAC from other abdominal cancers and noncancerous pancreatic pathologies. To further understand these glycan epitopes, an imaging mass spectrometry (IMS) approach was used to assess the N-glycome of the human pancreas and pancreatic cancer in a cohort of patients with PDAC represented by tissue microarrays and whole-tissue sections. Orthogonally, these same tissues were characterized by multiround immunofluorescence that defined expression of CA19-9 and sTRA as well as other lectins toward carbohydrate epitopes with the potential to improve PDAC diagnosis. These analyses revealed distinct differences not only in N-glycan spatial localization across both healthy and diseased tissues but importantly between different biomarker-categorized tissue samples. Unique sulfated biantennary N-glycans were detected specifically in normal pancreatic islets. N-glycans from CA19-9-expressing tissues tended to be biantennary, triantennary, and tetra-antennary structures with both core and terminal fucose residues and bisecting GlcNAc. These N-glycans were detected in less abundance in sTRA-expressing tumor tissues, which favored triantennary and tetra-antennary structures with polylactosamine extensions. Increased sialylation of N-glycans was detected in all tumor tissues. A candidate new biomarker derived from IMS was further explored by fluorescence staining with selected lectins on the same tissues. The lectins confirmed the expression of the epitopes in cancer cells and revealed different tumor-associated staining patterns between glycans with bisecting GlcNAc and those with terminal GlcNAc. Thus, the combination of lectin-immunohistochemistry and lectin-IMS techniques produces more complete information for tumor classification than the individual analyses alone. These findings potentiate the development of early assessment technologies to rapidly and specifically identify PDAC in the clinic that may directly impact patient outcomes.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Lectinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Polissacarídeos/metabolismo , Humanos , Imuno-Histoquímica , Espectrometria de Massas , Pâncreas/metabolismo
5.
Clin Cancer Res ; 27(1): 226-236, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33093149

RESUMO

PURPOSE: A subset of pancreatic ductal adenocarcinomas (PDACs) is highly resistant to systemic chemotherapy, but no markers are available in clinical settings to identify this subset. We hypothesized that a glycan biomarker for PDACs called sialylated tumor-related antigen (sTRA) could be used for this purpose. EXPERIMENTAL DESIGN: We tested for differences between PDACs classified by glycan expression in multiple systems: sets of cell lines, organoids, and isogenic cell lines; primary tumors; and blood plasma from human subjects. RESULTS: The sTRA-expressing models tended to have stem-like gene expression and the capacity for mesenchymal differentiation, in contrast to the nonexpressing models. The sTRA cell lines also had significantly increased resistance to seven different chemotherapeutics commonly used against pancreatic cancer. Patients with primary tumors that were positive for a gene expression classifier for sTRA received no statistically significant benefit from adjuvant chemotherapy, in contrast to those negative for the signature. In another cohort, based on direct measurements of sTRA in tissue microarrays, the patients who were high in sTRA again had no statistically significant benefit from adjuvant chemotherapy. Furthermore, a blood plasma test for the sTRA glycan identified the PDACs that showed rapid relapse following neoadjuvant chemotherapy. CONCLUSIONS: This research demonstrates that a glycan biomarker could have value to detect chemotherapy-resistant PDAC in clinical settings. This capability could aid in the development of stratified treatment plans and facilitate biomarker-guided trials targeting resistant PDAC.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/tratamento farmacológico , Recidiva Local de Neoplasia/epidemiologia , Neoplasias Pancreáticas/tratamento farmacológico , Antígenos Glicosídicos Associados a Tumores/sangue , Antígenos Glicosídicos Associados a Tumores/imunologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/imunologia , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/mortalidade , Linhagem Celular Tumoral , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/imunologia , Humanos , Concentração Inibidora 50 , Biópsia Líquida , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/mortalidade , Polissacarídeos/sangue , Polissacarídeos/imunologia , Medição de Risco/métodos
6.
Cancer Epidemiol Biomarkers Prev ; 29(12): 2513-2523, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532830

RESUMO

Patients afflicted with pancreatic ductal adenocarcinoma (PDAC) face a dismal prognosis, but headway could be made if physicians could identify the disease earlier. A compelling strategy to broaden the use of surveillance for PDAC is to incorporate molecular biomarkers in combination with clinical analysis and imaging tools. This article summarizes the components involved in accomplishing biomarker validation and an analysis of the requirements of molecular biomarkers for disease surveillance. We highlight the significance of consortia for this research and highlight resources and infrastructure of the Early Detection Research Network (EDRN). The EDRN brings together the multifaceted expertise and resources needed for biomarker validation, such as study design, clinical care, biospecimen collection and handling, molecular technologies, and biostatistical analysis, and studies coming out of the EDRN have yielded biomarkers that are moving forward in validation. We close the article with an overview of the current investigational biomarkers, an analysis of their performance relative to the established benchmarks, and an outlook on the current needs in the field. The outlook for improving the early detection of PDAC looks promising, and the pace of further research should be quickened through the resources and expertise of the EDRN and other consortia.See all articles in this CEBP Focus section, "NCI Early Detection Research Network: Making Cancer Detection Possible."


Assuntos
Biomarcadores Tumorais/metabolismo , Detecção Precoce de Câncer/métodos , Neoplasias Pancreáticas/diagnóstico , Idoso , Feminino , Humanos , Masculino , Neoplasias Pancreáticas
7.
Clin Cancer Res ; 25(9): 2745-2754, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30617132

RESUMO

PURPOSE: The CA19-9 biomarker is elevated in a substantial group of patients with pancreatic ductal adenocarcinoma (PDAC), but not enough to be reliable for the detection or diagnosis of the disease. We hypothesized that a glycan called sTRA (sialylated tumor-related antigen) is a biomarker for PDAC that improves upon CA19-9. EXPERIMENTAL DESIGN: We examined sTRA and CA19-9 expression and secretion in panels of cell lines, patient-derived xenografts, and primary tumors. We developed candidate biomarkers from sTRA and CA19-9 in a training set of 147 plasma samples and used the panels to make case-control calls, based on predetermined thresholds, in a 50-sample validation set and a blinded, 147-sample test set. RESULTS: The sTRA glycan was produced and secreted by pancreatic tumors and models that did not produce and secrete CA19-9. Two biomarker panels improved upon CA19-9 in the training set, one optimized for specificity, which included CA19-9 and 2 versions of the sTRA assay, and another optimized for sensitivity, which included 2 sTRA assays. Both panels achieved statistical improvement (P < 0.001) over CA19-9 in the validation set, and the specificity-optimized panel achieved statistical improvement (P < 0.001) in the blinded set: 95% specificity and 54% sensitivity (75% accuracy), compared with 97%/30% (65% accuracy). Unblinding produced further improvements and revealed independent, complementary contributions from each marker. CONCLUSIONS: sTRA is a validated serological biomarker of PDAC that yields improved performance over CA19-9. The new panels may enable surveillance for PDAC among people with elevated risk, or improved differential diagnosis among patients with suspected pancreatic cancer.


Assuntos
Antígenos Glicosídicos Associados a Tumores/sangue , Biomarcadores Tumorais/sangue , Antígeno CA-19-9/sangue , Carcinoma Ductal Pancreático/diagnóstico , Ácido N-Acetilneuramínico/química , Neoplasias Pancreáticas/diagnóstico , Idoso , Animais , Carcinoma Ductal Pancreático/sangue , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/sangue , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Sci Rep ; 7(1): 4020, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28642461

RESUMO

Molecular markers to detect subtypes of cancer cells could facilitate more effective treatment. We recently identified a carbohydrate antigen, named sTRA, that is as accurate a serological biomarker of pancreatic cancer as the cancer antigen CA19-9. We hypothesized that the cancer cells producing sTRA are a different subpopulation than those producing CA19-9. The sTRA glycan was significantly elevated in tumor tissue relative to adjacent pancreatic tissue in 3 separate tissue microarrays covering 38 patients. The morphologies of the cancer cells varied in association with glycan expression. Cells with dual staining of both markers tended to be in well-to-moderately differentiated glands with nuclear polarization, but exclusive sTRA staining was present in small clusters of cells with poor differentiation and large vacuoles, or in small and ill-defined glands. Patients with higher dual-staining of CA19-9 and sTRA had statistically longer time-to-progression after surgery. Patients with short time-to-progression (<2 years) had either low levels of the dual-stained cells or high levels of single-stained cells, and such patterns differentiated short from long time-to-progression with 90% (27/30) sensitivity and 80% (12/15) specificity. The sTRA and CA19-9 glycans define separate subpopulations of cancer cells and could together have value for classifying subtypes of pancreatic adenocarcinoma.


Assuntos
Antígenos de Neoplasias , Antígenos Glicosídicos Associados a Tumores/metabolismo , Biomarcadores Tumorais , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Animais , Antígenos Glicosídicos Associados a Tumores/sangue , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Gradação de Tumores , Neoplasias Pancreáticas/imunologia , Polissacarídeos/metabolismo , Prognóstico , Reprodutibilidade dos Testes , Neoplasias Pancreáticas
9.
PLoS One ; 11(12): e0167070, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27992432

RESUMO

Molecular indicators to specify the risk posed by a pancreatic cyst would benefit patients. Previously we showed that most cancer-precursor cysts, termed mucinous cysts, produce abnormal glycoforms of the proteins MUC5AC and endorepellin. Here we sought to validate the glycoforms as a biomarker of mucinous cysts and to specify the oligosaccharide linkages that characterize MUC5AC. We hypothesized that mucinous cysts secrete MUC5AC displaying terminal N-acetylglucosamine (GlcNAc) in either alpha or beta linkage. We used antibody-lectin sandwich assays to detect glycoforms of MUC5AC and endorepellin in cyst fluid samples from three independent cohorts of 49, 32, and 66 patients, and we used monoclonal antibodies to test for terminal, alpha-linked GlcNAc and the enzyme that produces it. A biomarker panel comprising the previously-identified glycoforms of MUC5AC and endorepellin gave 96%, 96%, and 87% accuracy for identifying mucinous cysts in the three cohorts with an average sensitivity of 92% and an average specificity of 94%. Glycan analysis showed that MUC5AC produced by a subset of mucinous cysts displays terminal alpha-GlcNAc, a motif expressed in stomach glands. The alpha-linked glycoform of MUC5AC was unique to intraductal papillary mucinous neoplasms (IPMN), whereas terminal beta-linked GlcNAc was increased in both IPMNs and mucinous cystic neoplasms (MCN). The enzyme that synthesizes alpha-GlcNAc, A4GNT, was expressed in the epithelia of mucinous cysts that expressed alpha-GlcNAc, especially in regions with high-grade dysplasia. Thus IPMNs secrete a gastric glycoform of MUC5AC that displays terminal alpha-GlcNAc, and the combined alpha-GlcNAc and beta-GlcNAc glycoforms form an accurate biomarker of mucinous cysts.


Assuntos
Adenocarcinoma Mucinoso/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Papilar/metabolismo , Mucina-5AC/química , Cisto Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Acetilglucosamina/metabolismo , Adenocarcinoma Mucinoso/diagnóstico , Biomarcadores/química , Biomarcadores/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Papilar/diagnóstico , Estudos de Coortes , Glicosilação , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Mucina-5AC/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Cisto Pancreático/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Fragmentos de Peptídeos/metabolismo
10.
Anal Chem ; 88(23): 11584-11592, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27809484

RESUMO

Glycans are critical to protein biology and are useful as disease biomarkers. Many studies of glycans rely on clinical specimens, but the low amount of sample available for some specimens limits the experimental options. Here we present a method to obtain information about protein glycosylation using a minimal amount of protein. We treat proteins that were captured or directly spotted in small microarrays (2.2 mm × 2.2 mm) with exoglycosidases to successively expose underlying features, and then we probe the native or exposed features using a panel of lectins or glycan-binding reagents. We developed an algorithm to interpret the data and provide predictions about the glycan motifs that are present in the sample. We demonstrated the efficacy of the method to characterize differences between glycoproteins in their sialic acid linkages and N-linked glycan branching, and we validated the assignments by comparing results from mass spectrometry and chromatography. The amount of protein used on-chip was about 11 ng. The method also proved effective for analyzing the glycosylation of a cancer biomarker in human plasma, MUC5AC, using only 20 µL of the plasma. A glycan on MUC5AC that is associated with cancer had mostly 2,3-linked sialic acid, whereas other glycans on MUC5AC had a 2,6 linkage of sialic acid. The on-chip glycan modification and probing (on-chip GMAP) method provides a platform for analyzing protein glycosylation in clinical specimens and could complement the existing toolkit for studying glycosylation in disease.


Assuntos
Mucina-5AC/sangue , Polissacarídeos/análise , Algoritmos , Glicosilação , Humanos , Análise em Microsséries , Polissacarídeos/síntese química , Software
11.
Cell Mol Gastroenterol Hepatol ; 2(2): 201-221.e15, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26998508

RESUMO

BACKGROUND AND AIMS: The CA19-9 antigen is the current best biomarker for pancreatic cancer, but it is not elevated in about 25% of pancreatic cancer patients at a cutoff that gives a 25% false-positive rate. We hypothesized that antigens related to the CA19-9 antigen, which is a glycan called sialyl-Lewis A (sLeA), are elevated in distinct subsets of pancreatic cancers. METHODS: We profiled the levels of multiple glycans and mucin glycoforms in plasma from 200 subjects with either pancreatic cancer or benign pancreatic disease, and we validated selected findings in additional cohorts of 116 and 100 subjects, the latter run blinded and including cancers that exclusively were early-stage. RESULTS: We found significant elevations in two glycans: an isomer of sLeA called sialyl-Lewis X, present both in sulfated and non-sulfated forms; and the sialylated form of a marker for pluripotent stem cells, type 1 N-acetyl-lactosamine. The glycans performed as well as sLeA as individual markers and were elevated in distinct groups of patients, resulting in a 3-marker panel that significantly improved upon any individual biomarker. The panel gave 85% sensitivity and 90% specificity in the combined discovery and validation cohorts, relative to 54% sensitivity and 86% specificity for sLeA; and it gave 80% sensitivity and 84% specificity in the independent test cohort, as opposed to 66% sensitivity and 72% specificity for sLeA. CONCLUSIONS: Glycans related to sLeA are elevated in distinct subsets of pancreatic cancers and yield improved diagnostic accuracy over CA19-9.

12.
PLoS One ; 10(10): e0139049, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26431551

RESUMO

The validation of candidate biomarkers often is hampered by the lack of a reliable means of assessing and comparing performance. We present here a reference set of serum and plasma samples to facilitate the validation of biomarkers for resectable pancreatic cancer. The reference set includes a large cohort of stage I-II pancreatic cancer patients, recruited from 5 different institutions, and relevant control groups. We characterized the performance of the current best serological biomarker for pancreatic cancer, CA 19-9, using plasma samples from the reference set to provide a benchmark for future biomarker studies and to further our knowledge of CA 19-9 in early-stage pancreatic cancer and the control groups. CA 19-9 distinguished pancreatic cancers from the healthy and chronic pancreatitis groups with an average sensitivity and specificity of 70-74%, similar to previous studies using all stages of pancreatic cancer. Chronic pancreatitis patients did not show CA 19-9 elevations, but patients with benign biliary obstruction had elevations nearly as high as the cancer patients. We gained additional information about the biomarker by comparing two distinct assays. The two CA 9-9 assays agreed well in overall performance but diverged in measurements of individual samples, potentially due to subtle differences in antibody specificity as revealed by glycan array analysis. Thus, the reference set promises be a valuable resource for biomarker validation and comparison, and the CA 19-9 data presented here will be useful for benchmarking and for exploring relationships to CA 19-9.


Assuntos
Antígeno CA-19-9/sangue , Neoplasias Pancreáticas/sangue , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pancreatite Crônica/sangue , Sensibilidade e Especificidade
13.
J Proteome Res ; 14(6): 2594-605, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25938165

RESUMO

The fucose post-translational modification is frequently increased in pancreatic cancer, thus forming the basis for promising biomarkers, but a subset of pancreatic cancer patients does not elevate the known fucose-containing biomarkers. We hypothesized that such patients elevate glycan motifs with fucose in linkages and contexts different from the known fucose-containing biomarkers. We used a database of glycan array data to identify the lectins CCL2 to detect glycan motifs with fucose in a 3' linkage; CGL2 for motifs with fucose in a 2' linkage; and RSL for fucose in all linkages. We used several practical methods to test the lectins and determine the optimal mode of detection, and we then tested whether the lectins detected glycans in pancreatic cancer patients who did not elevate the sialyl-Lewis A glycan, which is upregulated in ∼75% of pancreatic adenocarcinomas. Patients who did not upregulate sialyl-Lewis A, which contains fucose in a 4' linkage, tended to upregulate fucose in a 3' linkage, as detected by CCL2, but they did not upregulate total fucose or fucose in a 2' linkage. CCL2 binding was high in cancerous epithelia from pancreatic tumors, including areas negative for sialyl-Lewis A and a related motif containing 3' fucose, sialyl-Lewis X. Thus, glycans containing 3' fucose may complement sialyl-Lewis A to contribute to improved detection of pancreatic cancer. Furthermore, the use of panels of recombinant lectins may uncover details about glycosylation that could be important for characterizing and detecting cancer.


Assuntos
Adenocarcinoma/metabolismo , Fucose/metabolismo , Lectinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Polissacarídeos/metabolismo , Regulação para Cima , Quimiocina CCL2/metabolismo , Humanos , Sondas Moleculares , Polissacarídeos/química
14.
Mol Cell Proteomics ; 14(5): 1323-33, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25733690

RESUMO

The sialyl-Lewis A (sLeA) glycan forms the basis of the CA19-9 assay and is the current best biomarker for pancreatic cancer, but because it is not elevated in ∼25% of pancreatic cancers, it is not useful for early diagnosis. We hypothesized that sLeA-low tumors secrete glycans that are related to sLeA but not detectable by CA19-9 antibodies. We used a method called motif profiling to predict that a structural isomer of sLeA called sialyl-Lewis X (sLeX) is elevated in the plasma of some sLeA-low cancers. We corroborated this prediction in a set of 48 plasma samples and in a blinded set of 200 samples. An antibody sandwich assay formed by the capture and detection of sLeX was elevated in 13 of 69 cancers that were not elevated in sLeA, and a novel hybrid assay of sLeA capture and sLeX detected 24 of 69 sLeA-low cancers. A two-marker panel based on combined sLeA and sLeX detection differentiated 109 pancreatic cancers from 91 benign pancreatic diseases with 79% accuracy (74% sensitivity and 78% specificity), significantly better than sLeA alone, which yielded 68% accuracy (65% sensitivity and 71% specificity). Furthermore, sLeX staining was evident in tumors that do not elevate plasma sLeA, including those with poorly differentiated ductal adenocarcinoma. Thus, glycan-based biomarkers could characterize distinct subgroups of patients. In addition, the combined use of sLeA and sLeX, or related glycans, could lead to a biomarker panel that is useful in the clinical diagnosis of pancreatic cancer. Précis: This paper shows that a structural isomer of the current best biomarker for pancreatic cancer, CA19-9, is elevated in the plasma of patients who are low in CA19-9, potentially enabling more comprehensive detection and classification of pancreatic cancers.


Assuntos
Carcinoma Ductal Pancreático/sangue , Oligossacarídeos/sangue , Neoplasias Pancreáticas/sangue , Anticorpos Monoclonais/química , Antígenos Glicosídicos Associados a Tumores/análise , Antígenos Glicosídicos Associados a Tumores/química , Antígenos Glicosídicos Associados a Tumores/genética , Antígeno CA-19-9 , Sequência de Carboidratos , Carcinoma Ductal Pancreático/química , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/imunologia , Expressão Gênica , Humanos , Imunoensaio , Dados de Sequência Molecular , Oligossacarídeos/química , Oligossacarídeos/imunologia , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/imunologia , Polissacarídeos/química , Polissacarídeos/imunologia , Sensibilidade e Especificidade , Antígeno Sialil Lewis X
15.
BMC Biotechnol ; 14: 101, 2014 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-25479762

RESUMO

BACKGROUND: γ-Glutamyl transpeptidase 1 (GGT1) is an N-glycosylated membrane protein that catabolizes extracellular glutathione and other γ-glutamyl-containing substrates. In a variety of disease states, including tumor formation, the enzyme is shed from the surface of the cell and can be detected in serum. The structures of the N-glycans on human GGT1 (hGGT1) have been shown to be tissue-specific. Tumor-specific changes in the glycans have also been observed, suggesting that the N-glycans on hGGT1 would be an important biomarker for detecting tumors and monitoring their progression during treatment. However, the large quantities of purified protein required to fully characterize the carbohydrate content poses a significant challenge for biomarker development. Herein, we investigated a new antibody-lectin sandwich array (ALSA) platform to determine whether this microanalytical technique could be applied to the characterization of N-glycan content of hGGT1 in complex biological samples. RESULTS: Our data show that hGGT1 can be isolated from detergent extracted membrane proteins by binding to the ALSA platform. Probing hGGT1 with lectins enables characterization of the N-glycans. We probed hGGT1 from normal human liver tissue, normal human kidney tissue, and hGGT1 expressed in the yeast Pichia pastoris. The lectin binding patterns obtained with the ALSA platform are consistent with the hGGT1 N-glycan composition obtained from previous large-scale hGGT1 N-glycan characterizations from these sources. We also validate the implementation of the Microcystis aeruginosa lectin, microvirin, in this platform and provide refined evidence for its efficacy in specifically recognizing high-mannose-type N-glycans, a class of carbohydrate modification that is distinctive of hGGT1 expressed by many tumors. CONCLUSION: Using this microanalytical approach, we provide proof-of-concept for the implementation of ALSA in conducting high-throughput studies aimed at investigating disease-related changes in the glycosylation patterns on hGGT1 with the goal of enhancing clinical diagnoses and targeted treatment regimens.


Assuntos
Análise Serial de Proteínas/métodos , gama-Glutamiltransferase/metabolismo , Anticorpos/química , Glicosilação , Humanos , Rim/química , Rim/enzimologia , Lectinas/química , Fígado/química , Fígado/enzimologia , Ligação Proteica , gama-Glutamiltransferase/química
16.
PLoS One ; 9(9): e106255, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25184632

RESUMO

A recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method to spatially profile the location and distribution of multiple N-linked glycan species in frozen tissues has been extended and improved for the direct analysis of glycans in clinically derived formalin-fixed paraffin-embedded (FFPE) tissues. Formalin-fixed tissues from normal mouse kidney, human pancreatic and prostate cancers, and a human hepatocellular carcinoma tissue microarray were processed by antigen retrieval followed by on-tissue digestion with peptide N-glycosidase F. The released N-glycans were detected by MALDI-IMS analysis, and the structural composition of a subset of glycans could be verified directly by on-tissue collision-induced fragmentation. Other structural assignments were confirmed by off-tissue permethylation analysis combined with multiple database comparisons. Imaging of mouse kidney tissue sections demonstrates specific tissue distributions of major cellular N-linked glycoforms in the cortex and medulla. Differential tissue distribution of N-linked glycoforms was also observed in the other tissue types. The efficacy of using MALDI-IMS glycan profiling to distinguish tumor from non-tumor tissues in a tumor microarray format is also demonstrated. This MALDI-IMS workflow has the potential to be applied to any FFPE tissue block or tissue microarray to enable higher throughput analysis of the global changes in N-glycosylation associated with cancers.


Assuntos
Carcinoma Hepatocelular/química , Neoplasias Hepáticas/química , Neoplasias Pancreáticas/química , Polissacarídeos/análise , Neoplasias da Próstata/química , Adulto , Animais , Sequência de Carboidratos , Carcinoma Hepatocelular/patologia , Feminino , Formaldeído , Humanos , Hidrólise , Rim/anatomia & histologia , Rim/química , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Neoplasias Pancreáticas/patologia , Parafina , Inclusão em Parafina , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/química , Polissacarídeos/química , Neoplasias da Próstata/patologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Análise Serial de Tecidos , Fixação de Tecidos
17.
Mol Oncol ; 8(7): 1253-65, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24837184

RESUMO

The aggressiveness of pancreatic cancer is associated with the acquisition of mesenchymal characteristics by a subset of pancreatic cancer cells. The factors driving the development of this subset are not well understood. In this study, we tested the hypothesis that acquisition of a mesenchymal phenotype occurs selectively in tumor cells that harbor specific enabling genetic alterations. We obtained whole-genome comparative genomic hybridization (CGH) measurements on pancreatic cancer cell lines that have either an epithelial-like (17 cell lines) or a mesenchymal-like (9 cell lines) phenotype in vitro. The total amounts of amplifications and deletions were equivalent between the epithelial and mesenchymal groups, but 20 genes showed a major difference between the groups in prevalence of alterations. All 20 alterations (18 deletions and 2 amplifications) were more prevalent in the mesenchymal group, confirming the advanced nature of this cellular subtype. CDKN2A was altered in more than 50% of both groups, but co-deletions in neighboring genes, and concomitant loss of gene expression, were more prevalent in the mesenchymal group, suggesting that the size of the loss around CDKN2A affects cell phenotype. Whole-genome CGH on 11 primary cancer tissues revealed that the 20 genes were altered at a higher prevalence (up to 55% of the cases for certain genes) than randomly selected sets of 20 genes, with the same direction of alteration as in the cell lines. These findings support the concept that specific genetic alterations enable phenotype plasticity and provide promising candidate genes for further research.


Assuntos
Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , Dosagem de Genes , Genômica , Humanos , Pâncreas/citologia
18.
J Proteome Res ; 13(1): 289-99, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24303806

RESUMO

Currently, pancreatic cancer is the fourth cause of cancer death. In 2013, it is estimated that ∼38 460 people will die of pancreatic cancer. Early detection of malignant cyst (pancreatic cancer precursor) is necessary to help prevent late diagnosis of the tumor. In this study, we characterized glycoproteins and nonglycoproteins on pooled mucinous (n = 10) and nonmucinous (n = 10) pancreatic cyst fluid to identify "proteins of interest" to differentiate between mucinous cyst from nonmucinous cyst and investigate these proteins as potential biomarker targets. An automated multilectin affinity chromatography (M-LAC) platform was utilized for glycoprotein enrichment followed by nano-LC-MS/MS analysis. Spectral count quantitation allowed for the identification of proteins with significant differential levels in mucinous cysts from nonmucinous cysts of which one protein (periostin) was confirmed via immunoblotting. To exhaustively evaluate differentially expressed proteins, we used a number of proteomic tools including gene ontology classification, pathway and network analysis, Novoseek data mining, and chromosome gene mapping. Utilization of complementary proteomic tools revealed that several of the proteins such as mucin 6 (MUC6), bile salt-activated lipase (CEL), and pyruvate kinase lysozyme M1/M2 with significant differential expression have strong association with pancreatic cancer. Furthermore, chromosome gene mapping demonstrated coexpressions and colocalization of some proteins of interest including 14-3-3 protein epsilon (YWHAE), pigment epithelium derived factor (SERPINF1), and oncogene p53.


Assuntos
Cromatografia de Afinidade/métodos , Glicoproteínas/metabolismo , Lectinas/metabolismo , Cisto Pancreático/metabolismo , Eletroforese em Gel de Poliacrilamida , Humanos , Espectrometria de Massas/métodos
19.
Proteomics Clin Appl ; 7(9-10): 632-41, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23956151

RESUMO

PURPOSE: Lectins are valuable tools for detecting specific glycans in biological samples, but the interpretation of the measurements can be ambiguous due to the complexities of lectin specificities. Here, we present an approach to improve the accuracy of interpretation by converting lectin measurements into quantitative predictions of the presence of various glycan motifs. EXPERIMENTAL DESIGN: The conversion relies on a database of analyzed glycan array data that provides information on the specificities of the lectins for each of the motifs. We tested the method using measurements of lectin binding to glycans on glycan arrays and then applied the method to predicting motifs on the protein mucin 1 (MUC1) expressed in eight different pancreatic cancer cell lines. RESULTS: The combined measurements from several lectins were more accurate than individual measurements for predicting the presence or absence of motifs on arrayed glycans. The analysis of MUC1 revealed that each cell line expressed a unique pattern of glycoforms, and that the glycoforms significantly differed between MUC1 collected from conditioned media and MUC1 collected from cell lysates. CONCLUSIONS AND CLINICAL RELEVANCE: This new method could provide more accurate analyses of glycans in biological sample and make the use of lectins more practical and effective for a broad range of researchers.


Assuntos
Lectinas/metabolismo , Análise em Microsséries/métodos , Mucina-1/biossíntese , Neoplasias Pancreáticas/patologia , Polissacarídeos/química , Polissacarídeos/metabolismo , Linhagem Celular Tumoral , Humanos , Mucina-1/metabolismo , Ligação Proteica
20.
Mol Cell Proteomics ; 12(10): 2724-34, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23836919

RESUMO

Specific protein glycoforms may be uniquely informative about the pathological state of a cyst and may serve as accurate biomarkers. Here we tested that hypothesis using antibody-lectin sandwich arrays in broad screens of protein glycoforms and in targeted studies of candidate markers. We profiled 16 different glycoforms of proteins captured by 72 different antibodies in cyst fluid from mucinous and nonmucinous cysts (n = 22), and we then tested a three-marker panel in 22 addition samples and 22 blinded samples. Glycan alterations were not widespread among the proteins and were mainly confined to MUC5AC and endorepellin. Specific glycoforms of these proteins, defined by reactivity with wheat germ agglutinin and a blood group H antibody, were significantly elevated in mucinous cysts, whereas the core protein levels were not significantly elevated. A three-marker panel based on these glycoforms distinguished mucinous from nonmucinous cysts with 93% accuracy (89% sensitivity, 100% specificity) in a prevalidation sample set (n = 44) and with 91% accuracy (87% sensitivity, 100% specificity) in independent, blinded samples (n = 22). Targeted lectin measurements and mass spectrometry analyses indicated that the higher wheat germ agglutinin and blood group H reactivity was due to oligosaccharides terminating in GlcNAc or N-acetyl-lactosamine with occasional α1,2-linked fucose. The results show that MUC5AC and endorepellin glycoforms may be highly specific and sensitive biomarkers for the differentiation of mucinous from nonmucinous pancreatic cysts.


Assuntos
Proteoglicanas de Heparan Sulfato/metabolismo , Mucina-5AC/metabolismo , Cisto Pancreático/metabolismo , Fragmentos de Peptídeos/metabolismo , Polissacarídeos/metabolismo , Adolescente , Adulto , Idoso , Biomarcadores/metabolismo , Líquido Cístico , Feminino , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA