Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 262(Pt 2): 130239, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367788

RESUMO

Herein, cellulose nanocrystals were synthesized from oil palm fronds (CNC-OPF) involving two pretreatment approaches, viz. autohydrolysis and soda pulping. The pretreatments were applied individually to OPF fibers to assess their influence on CNCs' physicochemical and thermal properties. CNC-OPF samples were assessed using complementary characterization techniques, which confirmed their purity and characteristics. CP/MAS 13C NMR and TEM studies revealed that autohydrolysis pretreatment yielded CNCs with effective hemicellulose and extractives removal compared to that of soda pulping. XRD analysis demonstrated that autohydrolysis-treated CNC-OPF contained a much higher crystallinity index compared to soda pulping treatment. BET measurement disclosed a relatively higher surface area and wider pore diameter of autohydrolysis-treated CNC-OPF. Autohydrolysis-treated CNCs were applied as a reinforcement filler in alginate-based hydrogel beads for the removal of 4-chlorophenol from water, which attained a qmax of 19.168 mg g-1. BET analysis revealed the less porous nature of CNC-ALG hydrogel beads which could have contributed to hydrogel beads' relatively lower adsorption capacity. The point of zero charge of CNC-ALG hydrogel beads was 4.82, suggesting their applicability only within a short solution pH range. This study directs future studies to unveil the possibilities of functionalizing CNCs in order to enhance the adsorption performance of CNC-immobilized hydrogel beads towards 4-chlorophenol and other organic contaminants.


Assuntos
Clorofenóis , Nanopartículas , Celulose/química , Hidrogéis/química , Nanopartículas/química
2.
Int J Biol Macromol ; 153: 385-398, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32145234

RESUMO

Oil palm frond (OPF) is one of largest contributions to the biomass waste from oil palm plantation. In this work, OPF has been successfully utilized to prepare cellulose nanocrystal (OPF-CNC) by acid hydrolysis. OPF was initially treated with autohydrolysis treatment. The obtained OPF-CNC was characterized via complementary analyses. The produced OPF-CNC showed a high crystallinity index value (60%) and high BET surface area (26.10 m2 g-1) as compared to α-cellulose (crystallinity index: 54% and BET surface area:7.14 m2g-1). The surface analyses via scanning electron microscope (SEM) and transmission electron microscopy (TEM) demonstrated that the OPF-CNC has a smooth surface with a needle-like shape, where the average length and diameter are 95.09 nm and 6.81 nm, respectively. The corrosion analyses via electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PD) illustrate that the coated mild steel with the inclusion of 0.5 wt% OPF-CNC has managed to sharply reduce the corrosion (99%). The coated mild steel with the inclusion of 0.5 wt% OPF-CNC showed the highest hydrophobicity (100.5 ± 0.7°) and has lowest amount of O via water contact angle and energy dispersive X-ray spectroscopy (EDX) analyses respectively, indicating lowest corrosion rate.


Assuntos
Celulose/química , Nanopartículas/química , Poaceae/química , Aço/química , Corrosão
3.
Int J Biol Macromol ; 95: 1228-1234, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27836655

RESUMO

In the present study, microcrystalline cellulose (MCC) was isolated from oil palm fronds (OPF) using chemo-mechanical process. Wherein, alkaline hydrogen peroxide (AHP) was utilized to extract OPF fibre at different AHP concentrations. The OPF pulp fibre was then bleached with acidified sodium chlorite solution followed by the acid hydrolysis using hydrochloric acid. Several analytical methods were conducted to determine the influence of AHP concentration on thermal properties, morphological properties, microscopic and crystalline behaviour of isolated MCC. Results showed that the MCC extracted from OPF fibres had fibre diameters of 7.55-9.11nm. X-ray diffraction (XRD) analyses revealed that the obtained microcrystalline fibre had both celluloses I and cellulose II polymorphs structure, depending on the AHP concentrations. The Fourier transmission infrared (FTIR) analyses showed that the AHP pre-hydrolysis was successfully removed hemicelluloses and lignin from the OPF fibre. The crystallinity of the MCC was increased with the AHP concentrations. The degradation temperature of MCC was about 300°C. The finding of the present study showed that pre-treatment process potentially influenced the quality of the isolation of MCC from oil palm fronds.


Assuntos
Arecaceae/química , Celulose/isolamento & purificação , Peróxido de Hidrogênio/química , Folhas de Planta/química , Caules de Planta/química , Celulose/química , Cloretos/química , Ácido Clorídrico/química , Concentração de Íons de Hidrogênio , Hidrólise
4.
Int J Biol Macromol ; 92: 11-19, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27373428

RESUMO

The present study sheds light on the physical and chemical characteristics of microcrystalline cellulose (MCC) isolated from oil palm fronds (OPF) pulps. It was found that the OPF MCC was identified as cellulose II polymorph, with higher crystallinity index than OPF α-cellulose (CrIOPFMCC: 71%>CrIOPFα-cellulose: 47%). This indicates that the acid hydrolysis allows the production of cellulose that is highly crystalline. BET surface area of OPF MCC was found to be higher than OPF α-cellulose (SBETOPFMCC: 5.64m2g-1>SBETOPFα-cellulose:Qa0 2.04m2g-1), which corroborates their potential as an adsorbent. In batch adsorption studies, it was observed that the experimental data fit well with Langmuir adsorption isotherm in comparison to Freundlich isotherm. The monolayer adsorption capacity (Qa0) of OPF MCC was found to be around 51.811mgg-1 and the experimental data fitted well to pseudo-second-order kinetic model.


Assuntos
Celulose/química , Azul de Metileno/química , Modelos Químicos , Poaceae/química , Adsorção
5.
Int J Biol Macromol ; 85: 370-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26772914

RESUMO

In this work, polylactic acid (PLA) reinforced cellulose nanowhiskers (CNW) were prepared through solution casting technique. The CNW was first isolated from oil palm empty fruit bunch microcrystalline cellulose (OPEFB-MCC) by using 64% H2SO4 and was designated as CNW-S. The optical microscopy revealed that the large particle of OPEFB-MCC has been broken down by the hydrolysis treatment. The atomic force microscopy confirmed that the CNW-S obtained is in nanoscale dimension and appeared in individual rod-like character. The produced CNW-S was then incorporated with PLA at 1, 3, and 5 parts per hundred (phr) resins for the PLA-CNW-S nanocomposite production. The synthesized nanocomposites were then characterized by a mean of tensile properties and thermal stability. Interestingly to note that incorporating of 3 phr/CNW-S in PLA improved the tensile strength by 61%. Also, CNW-S loading showed a positive impact on the Young's modulus of PLA. The elongation at break (Eb) of nanocomposites, however, decreased with the addition of CNW-S. Field emission scanning electron microscopy and transmission electron microscopy revealed that the CNW-S dispersed well in PLA at lower filler loading before it started to agglomerate at higher CNW-S loading (5phr). The DSC analysis of the nanocomposites obtained showed that Tg,Tcc and Tm values of PLA were improved with CNW-S loading. The TGA analysis however, revealed that incopreated CNW-S in PLA effect the thermal stability (T10,T50 and Tmax) of nanocomposite, where it decrease linearly with CNW-S loading.


Assuntos
Arecaceae/química , Biomassa , Celulose/química , Ácido Láctico/química , Nanocompostos/química , Polímeros/química , Varredura Diferencial de Calorimetria , Fenômenos Mecânicos , Nanocompostos/ultraestrutura , Poliésteres , Termogravimetria
6.
Carbohydr Polym ; 103: 119-25, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24528708

RESUMO

The objective of this study is to compare the effect of two different isolation techniques on the physico-chemical and thermal properties of cellulose nanowhiskers (CNW) from oil palm biomass obtained microcrystalline cellulose (MCC). Fourier transform infrared analysis showed that there are no significant changes in the peak positions, suggesting that the treatments did not affect the chemical structure of the cellulose fragment. Scanning electron microscopy showed that the aggregated structure of MCC is broken down after treatment. Transmission electron microscopy revealed that the produced CNW displayed a nanoscale structure. X-ray diffraction analysis indicated that chemical swelling improves the crystallinity of MCC while maintaining the cellulose I structure. Acid hydrolysis however reduced the crystallinity of MCC and displayed the coexistence of cellulose I and II allomorphs. The produced CNW is shown to have a good thermal stability and hence is suitable for a range of applications such as green biodegradable nanocomposites reinforced with CNW.


Assuntos
Celulose/química , Celulose/isolamento & purificação , Nanocompostos/química , Óleos de Plantas/química , Biomassa , Cristalização , Frutas/química , Microscopia Eletrônica de Transmissão , Óleo de Palmeira , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
7.
Carbohydr Polym ; 98(1): 139-45, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23987327

RESUMO

In this work, polylactic acid (PLA) composites filled with microcrystalline cellulose (MCC) from oil palm biomass were successfully prepared through solution casting. Fourier transform infrared (FT-IR) spectroscopy indicates that there are no significant changes in the peak positions, suggesting that incorporation of MCC in PLA did not result in any significant change in chemical structure of PLA. Thermogravimetric analysis was conducted on the samples. The T50 decomposition temperature improved with addition of MCC, showing increase in thermal stability of the composites. The synthesized composites were characterized in terms of tensile properties. The Young's modulus increased by about 30%, while the tensile strength and elongation at break for composites decreased with addition of MCC. Scanning electron microscopy (SEM) of the composites fractured surface shows that the MCC remained as aggregates of crystalline cellulose. Atomic force microscopy (AFM) topographic image of the composite surfaces show clustering of MCC with uneven distribution.


Assuntos
Arecaceae/química , Biomassa , Celulose/química , Ácido Láctico/química , Polímeros/química , Frutas/química , Fenômenos Mecânicos , Poliésteres , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA