Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(3): 943-956, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38285066

RESUMO

Angiogenesis is a key process in embryonic development, a disruption of this process can lead to severe developmental defects, such as limb malformations. The identification of molecular perturbations representative of antiangiogenesis in zebrafish embryo (ZFE) may guide the assessment of developmental toxicity from an endpoint- to a mechanism-based approach, thereby improving the extrapolation of findings to humans. Thus, the aim of the study was to discover molecular changes characteristic of antiangiogenesis and developmental toxicity. We exposed ZFEs to two antiangiogenic drugs (SU4312, sorafenib) and two developmental toxicants (methotrexate, rotenone) with putative antiangiogenic action. Molecular changes were measured by performing untargeted metabolomics in single embryos. The metabolome response was accompanied by the occurrence of morphological alterations. Two distinct metabolic effect patterns were observed. The first pattern comprised common effects of two specific angiogenesis inhibitors and the known teratogen methotrexate, strongly suggesting a shared mode of action of antiangiogenesis and developmental toxicity. The second pattern involved joint effects of methotrexate and rotenone, likely related to disturbances in energy metabolism. The metabolites of the first pattern, such as phosphatidylserines, pterines, retinol, or coenzyme Q precursors, represented potential links to antiangiogenesis and related developmental toxicity. The metabolic effect pattern can contribute to biomarker identification for a mechanism-based toxicological testing.


Assuntos
Inibidores da Angiogênese , Peixe-Zebra , Animais , Humanos , Inibidores da Angiogênese/toxicidade , Inibidores da Angiogênese/metabolismo , Angiogênese , Metotrexato/toxicidade , Rotenona/farmacologia , Embrião não Mamífero , Metabolômica
2.
Arch Toxicol ; 97(11): 2903-2917, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37665362

RESUMO

Omics techniques have been increasingly recognized as promising tools for Next Generation Risk Assessment. Targeted metabolomics offer the advantage of providing readily interpretable mechanistic information about perturbed biological pathways. In this study, a high-throughput LC-MS/MS-based broad targeted metabolomics system was applied to study nitrofurantoin metabolic dynamics over time and concentration and to provide a mechanistic-anchored approach for point of departure (PoD) derivation. Upon nitrofurantoin exposure at five concentrations (7.5 µM, 15 µM, 20 µM, 30 µM and 120 µM) and four time points (3, 6, 24 and 48 h), the intracellular metabolome of HepG2 cells was evaluated. In total, 256 uniquely identified metabolites were measured, annotated, and allocated in 13 different metabolite classes. Principal component analysis (PCA) and univariate statistical analysis showed clear metabolome-based time and concentration effects. Mechanistic information evidenced the differential activation of cellular pathways indicative of early adaptive and hepatotoxic response. At low concentrations, effects were seen mainly in the energy and lipid metabolism, in the mid concentration range, the activation of the antioxidant cellular response was evidenced by increased levels of glutathione (GSH) and metabolites from the de novo GSH synthesis pathway. At the highest concentrations, the depletion of GSH, together with alternations reflective of mitochondrial impairments, were indicative of a hepatotoxic response. Finally, a metabolomics-based PoD was derived by multivariate PCA using the whole set of measured metabolites. This approach allows using the entire dataset and derive PoD that can be mechanistically anchored to established key events. Our results show the suitability of high throughput targeted metabolomics to investigate mechanisms of hepatoxicity and derive point of departures that can be linked to existing adverse outcome pathways and contribute to the development of new ones.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nitrofurantoína , Humanos , Nitrofurantoína/toxicidade , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica , Glutationa , Doença Hepática Induzida por Substâncias e Drogas/etiologia
3.
Toxicol Lett ; 353: 43-59, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626816

RESUMO

We describe a strategy using an in vitro metabolomics assay with tubular rat NRK-52E cells to investigate the Modes of Action (MoAs) of nephrotoxic compounds. Chemicals were selected according to their MoAs based on literature information: acetaminophen, 4-aminophenol and S-(trichlorovinyl-)L-cysteine (TCVC), (covalent protein binding); gentamycin, vancomycin, polymycin B and CdCl2 (lysosomal overload) and tenofovir and cidofovir (mitochondrial DNA-interaction). After treatment and harvesting of the cells, intracellular endogenous metabolites were quantified relative to vehicle control. Metabolite patterns were evaluated in a purely data-driven pattern generation process excluding published information. This strategy confirmed the assignment of the chemicals to the respective MoA except for TCVC and CdCl2. Finally, TCVC was defined as unidentified and CdCl2 was reclassified to the MoA "covalent protein binding". Hierarchical cluster analysis of 58 distinct metabolites from the patterns enabled a clear visual separation of chemicals in each MoA. The assay reproducibility was very good and metabolic responses were consistent. These results support the use of metabolome analysis in NRK-52E cells as a suitable tool for understanding and investigating the MoA of nephrotoxicants. This assay could enable the early identification of nephrotoxic compounds and finally reduce animal testing.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Nefropatias/induzido quimicamente , Túbulos Renais/citologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Metabolômica , Ratos
4.
Plant J ; 30(6): 663-77, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12061898

RESUMO

Tobacco transformants that express an antisense RBCS construct were used to investigate the consequences of a lesion in photosynthetic carbon metabolism for nitrogen metabolism and secondary metabolism. The results show that an inhibition of photosynthesis and decrease in sugar levels leads to a general inhibition of nitrogen metabolism, and dramatic changes in the levels of secondary metabolites. The response was particularly clear in plants that received excess nitrogen. In these conditions, a decrease of Rubisco activity led to an inhibition of nitrate reductase activity, accumulation of nitrate, a decrease of amino acid levels that was larger than the decrease of sugars, and a large decrease of chlorogenic acid and of nicotine, which are the major carbon- and nitrogen-rich secondary metabolites in tobacco leaves, respectively. Similar changes were seen when nitrogen-replete wild-type tobacco was grown in low light. The inhibition of nitrogen metabolism was partly masked when wild-type plants and antisense RBCS transformants were compared in marginal or in limiting nitrogen, because the lower growth rate of the transformants alleviated the nitrogen deficiency, leading to an increase of amino acids. In these conditions, chlorogenic acid always decreased but the decrease of nicotine was ameliorated or reversed. When the changes in internal pools are compared across all the genotypes and growth conditions, two conclusions emerge. First, decreased levels of primary metabolites lead to a dramatic decrease in the levels of secondary metabolites. Second, changes of the amino acid : sugar ratio are accompanied by changes of the nicotine:chlorogenic acid ratio.


Assuntos
Aminoácidos/metabolismo , Nicotiana/enzimologia , Nicotina/metabolismo , Nitratos/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Metabolismo dos Carboidratos , Ácido Clorogênico/metabolismo , Clorofila/metabolismo , DNA Antissenso/genética , Ácidos Cetoglutáricos/metabolismo , Luz , Nitrato Redutase , Nitrato Redutases/metabolismo , Nitratos/farmacologia , Fotossíntese/fisiologia , Folhas de Planta/enzimologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Compostos de Potássio/farmacologia , Propanóis/metabolismo , Ribulose-Bifosfato Carboxilase/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/genética , Rutina/metabolismo , Nicotiana/genética , Nicotiana/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA