Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lab Invest ; 104(1): 100285, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949359

RESUMO

Cutaneous neurofibromas (cNFs) are characteristic of neurofibromatosis 1 (NF1), yet their immune microenvironment is incompletely known. A total of 61 cNFs from 10 patients with NF1 were immunolabeled for different types of T cells and macrophages, and the cell densities were correlated with clinical characteristics. Eight cNFs and their overlying skin were analyzed for T cell receptor CDR domain sequences, and mass spectrometry of 15 cNFs and the overlying skin was performed to study immune-related processes. Intratumoral T cells were detected in all cNFs. Tumors from individuals younger than the median age of the study participants (33 years), growing tumors, and tumors smaller than the data set median showed increased T cell density. Most samples displayed intratumoral or peritumoral aggregations of CD3-positive cells. T cell receptor sequencing demonstrated that the skin and cNFs host distinct T cell populations, whereas no dominant cNF-specific T cell clones were detected. Unique T cell clones were fewer in cNFs than in skin, and mass spectrometry suggested lower expression of proteins related to T cell-mediated immunity in cNFs than in skin. CD163-positive cells, suggestive of M2 macrophages, were abundant in cNFs. Human cNFs have substantial T cell and macrophage populations that may be tumor-specific.


Assuntos
Neurofibroma , Neurofibromatose 1 , Neoplasias Cutâneas , Humanos , Adulto , Neurofibromatose 1/patologia , Neurofibroma/metabolismo , Neurofibroma/patologia , Neoplasias Cutâneas/metabolismo , Receptores de Antígenos de Linfócitos T , Microambiente Tumoral
2.
Cancers (Basel) ; 14(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35565298

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with no well-established prognostic biomarkers. We examined the expression of protein arginine methyltransferases across hematological malignancies and discovered high levels of PRMT7 mRNA in T-ALL, particularly in the mature subtypes of T-ALL. The genetic deletion of PRMT7 by CRISPR-Cas9 reduced the colony formation of T-ALL cells and changed arginine monomethylation patterns in protein complexes associated with the RNA and DNA processing and the T-ALL pathogenesis. Among them was RUNX1, whose target gene expression was consequently deregulated. These results suggest that PRMT7 plays an active role in the pathogenesis of T-ALL.

3.
Dermatology ; 238(2): 329-339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34237737

RESUMO

BACKGROUND: Cutaneous neurofibromas (cNFs) are hallmarks of neurofibromatosis 1 (NF1) and cause the main disease burden in adults with NF1. Mast cells are a known component of cNFs. However, no comprehensive characterization of mast cells in cNFs is available, and their contributions to cNF growth and symptoms such as itch are not known. METHODS: We collected 60 cNFs from ten individuals with NF1, studied their mast cell proteinase content, and compared the mast cell numbers to selected clinical features of the tumors and patients. The tumors were immunolabeled for the mast cell markers CD117, tryptase, and chymase, and the percentage of immunopositive cells was determined using computer-assisted methods. RESULTS: The median proportions of positive cells were 5.5% (range 0.1-14.4) for CD117, 4.0% (1.2-7.0) for tryptase, and 5.0% (1.1-15.9) for chymase. The median densities of cells immunopositive for CD117, tryptase, and chymase were 280, 243, and 250 cells/mm2, respectively. Small tumors, growing tumors, and tumors from patients below the median age of 33 years displayed a high proportion of mast cells. Cells expressing both tryptase and chymase were the predominant mast cell type in cNFs, followed by cells expressing chymase only. CONCLUSION: The results highlight the abundance of mast cells in cNFs and that their number and subtypes clearly differ from those previously reported in unaffected skin.


Assuntos
Neurofibroma , Neurofibromatose 1 , Adulto , Contagem de Células , Quimases/metabolismo , Humanos , Mastócitos/metabolismo , Mastócitos/patologia , Neurofibroma/patologia , Neurofibromatose 1/complicações , Neurofibromatose 1/patologia , Triptases/metabolismo
4.
J Biol Chem ; 295(13): 4194-4211, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32071079

RESUMO

Protein phosphatase 2A (PP2A) critically regulates cell signaling and is a human tumor suppressor. PP2A complexes are modulated by proteins such as cancerous inhibitor of protein phosphatase 2A (CIP2A), protein phosphatase methylesterase 1 (PME-1), and SET nuclear proto-oncogene (SET) that often are deregulated in cancers. However, how they impact cellular phosphorylation and how redundant they are in cellular regulation is poorly understood. Here, we conducted a systematic phosphoproteomics screen for phosphotargets modulated by siRNA-mediated depletion of CIP2A, PME-1, and SET (to reactivate PP2A) or the scaffolding A-subunit of PP2A (PPP2R1A) (to inhibit PP2A) in HeLa cells. We identified PP2A-modulated targets in diverse cellular pathways, including kinase signaling, cytoskeleton, RNA splicing, DNA repair, and nuclear lamina. The results indicate nonredundancy among CIP2A, PME-1, and SET in phosphotarget regulation. Notably, PP2A inhibition or reactivation affected largely distinct phosphopeptides, introducing a concept of nonoverlapping phosphatase inhibition- and activation-responsive sites (PIRS and PARS, respectively). This phenomenon is explained by the PPP2R1A inhibition impacting primarily dephosphorylated threonines, whereas PP2A reactivation results in dephosphorylation of clustered and acidophilic sites. Using comprehensive drug-sensitivity screening in PP2A-modulated cells to evaluate the functional impact of PP2A across diverse cellular pathways targeted by these drugs, we found that consistent with global phosphoproteome effects, PP2A modulations broadly affect responses to more than 200 drugs inhibiting a broad spectrum of cancer-relevant targets. These findings advance our understanding of the phosphoproteins, pharmacological responses, and cellular processes regulated by PP2A modulation and may enable the development of combination therapies.


Assuntos
Autoantígenos/genética , Hidrolases de Éster Carboxílico/genética , Proteínas de Ligação a DNA/genética , Chaperonas de Histonas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteína Fosfatase 2/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Lâmina Nuclear/efeitos dos fármacos , Lâmina Nuclear/genética , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2/genética , Proteoma/efeitos dos fármacos , Proto-Oncogene Mas , RNA Interferente Pequeno/genética , Biologia de Sistemas
5.
Sci Transl Med ; 10(450)2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021885

RESUMO

Kinase inhibitor resistance constitutes a major unresolved clinical challenge in cancer. Furthermore, the role of serine/threonine phosphatase deregulation as a potential cause for resistance to kinase inhibitors has not been thoroughly addressed. We characterize protein phosphatase 2A (PP2A) activity as a global determinant of KRAS-mutant lung cancer cell resistance across a library of >200 kinase inhibitors. The results show that PP2A activity modulation alters cancer cell sensitivities to a large number of kinase inhibitors. Specifically, PP2A inhibition ablated mitogen-activated protein kinase kinase (MEK) inhibitor response through the collateral activation of AKT/mammalian target of rapamycin (mTOR) signaling. Combination of mTOR and MEK inhibitors induced cytotoxicity in PP2A-inhibited cells, but even this drug combination could not abrogate MYC up-regulation in PP2A-inhibited cells. Treatment with an orally bioavailable small-molecule activator of PP2A DT-061, in combination with the MEK inhibitor AZD6244, resulted in suppression of both p-AKT and MYC, as well as tumor regression in two KRAS-driven lung cancer mouse models. DT-061 therapy also abrogated MYC-driven tumorigenesis. These data demonstrate that PP2A deregulation drives MEK inhibitor resistance in KRAS-mutant cells. These results emphasize the need for better understanding of phosphatases as key modulators of cancer therapy responses.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Fosfatase 2/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
6.
Sci Rep ; 5: 13099, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26278961

RESUMO

Hyperactivated RAS drives progression of many human malignancies. However, oncogenic activity of RAS is dependent on simultaneous inactivation of protein phosphatase 2A (PP2A) activity. Although PP2A is known to regulate some of the RAS effector pathways, it has not been systematically assessed how these proteins functionally interact. Here we have analyzed phosphoproteomes regulated by either RAS or PP2A, by phosphopeptide enrichment followed by mass-spectrometry-based label-free quantification. To allow data normalization in situations where depletion of RAS or PP2A inhibitor CIP2A causes a large uni-directional change in the phosphopeptide abundance, we developed a novel normalization strategy, named pairwise normalization. This normalization is based on adjusting phosphopeptide abundances measured before and after the enrichment. The superior performance of the pairwise normalization was verified by various independent methods. Additionally, we demonstrate how the selected normalization method influences the downstream analyses and interpretation of pathway activities. Consequently, bioinformatics analysis of RAS and CIP2A regulated phosphoproteomes revealed a significant overlap in their functional pathways. This is most likely biologically meaningful as we observed a synergistic survival effect between CIP2A and RAS expression as well as KRAS activating mutations in TCGA pan-cancer data set, and synergistic relationship between CIP2A and KRAS depletion in colony growth assays.


Assuntos
Autoantígenos/metabolismo , Proteínas de Membrana/metabolismo , Fosfopeptídeos/análise , Proteínas ras/metabolismo , Área Sob a Curva , Autoantígenos/genética , Proliferação de Células , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Estimativa de Kaplan-Meier , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Neoplasias/metabolismo , Neoplasias/mortalidade , Neoplasias/patologia , Fosforilação , Proteína Fosfatase 2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Curva ROC , Transdução de Sinais , Espectrometria de Massas em Tandem , Titânio/química , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética
7.
Plant Mol Biol ; 61(4-5): 719-32, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16897487

RESUMO

Plant class III peroxidases (POXs) take part in the formation of lignin and maturation of plant cell walls. However, only a few examples of such peroxidases from gymnosperm tree species with highly lignified xylem tracheids have been implicated so far. We report here cDNA cloning of three xylem-expressed class III peroxidase encoding genes from Norway spruce (Picea abies). The translated proteins, PX1, PX2 and PX3, contain the conserved amino acids required for heme-binding and peroxidase catalysis. They all begin with putative secretion signal propeptide sequences but diverge substantially at phylogenetic level, grouping to two subclusters when aligned with other class III plant peroxidases. In situ hybridization analysis on expression of the three POXs in Norway spruce seedlings showed that mRNA coding for PX1 and PX2 accumulated in the cytoplasm of young, developing tracheids within the current growth ring where lignification is occurring. Function of the putative N-terminal secretion signal peptides for PX1, PX2 and PX3 was confirmed by constructing chimeric fusions with EGFP (enhanced green fluorescent protein) and expressing them in tobacco protoplasts. Full-length coding region of px1 was also heterologously expressed in Catharanthus roseus hairy root cultures. Thus, at least the spruce PX1 peroxidase is processed via the endoplasmic reticulum (ER) most likely for secretion to the cell wall. Thereby, PX1 displays correct spatiotemporal localization for participation in the maturation of the spruce tracheid secondary cell wall.


Assuntos
Regulação da Expressão Gênica de Plantas , Peroxidases/genética , Peroxidases/metabolismo , Picea/enzimologia , Picea/genética , Sequência de Aminoácidos , Catharanthus , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , Peroxidases/química , Filogenia , Picea/classificação , Caules de Planta , Transporte Proteico , Nicotiana/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA