Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Genom Med ; 9(1): 35, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898085

RESUMO

HPV infections are associated with a fraction of vulvar cancers. Through hybridization capture and DNA sequencing, HPV DNA was detected in five of thirteen vulvar cancers. HPV16 DNA was integrated into human DNA in three of the five. The insertions were in introns of human NCKAP1, C5orf67, and LRP1B. Integrations in NCKAP1 and C5orf67 were flanked by short direct repeats in the human DNA, consistent with HPV DNA insertions at sites of abortive, staggered, endonucleolytic incisions. The insertion in C5orf67 was present as a 36 kbp, human-HPV-hetero-catemeric DNA as either an extrachromosomal circle or a tandem repeat within the human genome. The human circularization/repeat junction was defined at single nucleotide resolution. The integrated viral DNA segments all retained an intact upstream regulatory region and the adjacent viral E6 and E7 oncogenes. RNA sequencing revealed that the only HPV genes consistently transcribed from the integrated viral DNAs were E7 and E6*I. The other two HPV DNA+ tumors had coinfections, but no evidence for integration. HPV-positive and HPV-negative vulvar cancers exhibited contrasting human, global gene expression patterns partially overlapping with previously observed differences between HPV-positive and HPV-negative cervical and oropharyngeal cancers. A substantial fraction of the differentially expressed genes involved immune system function. Thus, transcription and HPV DNA integration in vulvar cancers resemble those in other HPV-positive cancers. This study emphasizes the power of hybridization capture coupled with DNA and RNA sequencing to identify a broad spectrum of HPV types, determine human genome integration status of viral DNAs, and elucidate their structures.

2.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496441

RESUMO

In cancer, genetic and transcriptomic variations generate clonal heterogeneity, possibly leading to treatment resistance. Long-read single-cell RNA sequencing (LR scRNA-seq) has the potential to detect genetic and transcriptomic variations simultaneously. Here, we present LongSom, a computational workflow leveraging LR scRNA-seq data to call de novo somatic single-nucleotide variants (SNVs), copy-number alterations (CNAs), and gene fusions to reconstruct the tumor clonal heterogeneity. For SNV calling, LongSom distinguishes somatic SNVs from germline polymorphisms by reannotating marker gene expression-based cell types using called variants and applying strict filters. Applying LongSom to ovarian cancer samples, we detected clinically relevant somatic SNVs that were validated against single-cell and bulk panel DNA-seq data and could not be detected with short-read (SR) scRNA-seq. Leveraging somatic SNVs and fusions, LongSom found subclones with different predicted treatment outcomes. In summary, LongSom enables de novo SNVs, CNAs, and fusions detection, thus enabling the study of cancer evolution, clonal heterogeneity, and treatment resistance.

3.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38464114

RESUMO

Gene fusions are found as cancer drivers in diverse adult and pediatric cancers. Accurate detection of fusion transcripts is essential in cancer clinical diagnostics, prognostics, and for guiding therapeutic development. Most currently available methods for fusion transcript detection are compatible with Illumina RNA-seq involving highly accurate short read sequences. Recent advances in long read isoform sequencing enable the detection of fusion transcripts at unprecedented resolution in bulk and single cell samples. Here we developed a new computational tool CTAT-LR-fusion to detect fusion transcripts from long read RNA-seq with or without companion short reads, with applications to bulk or single cell transcriptomes. We demonstrate that CTAT-LR-fusion exceeds fusion detection accuracy of alternative methods as benchmarked with simulated and real long read RNA-seq. Using short and long read RNA-seq, we further apply CTAT-LR-fusion to bulk transcriptomes of nine tumor cell lines, and to tumor single cells derived from a melanoma sample and three metastatic high grade serous ovarian carcinoma samples. In both bulk and in single cell RNA-seq, long isoform reads yielded higher sensitivity for fusion detection than short reads with notable exceptions. By combining short and long reads in CTAT-LR-fusion, we are able to further maximize detection of fusion splicing isoforms and fusion-expressing tumor cells. CTAT-LR-fusion is available at https://github.com/TrinityCTAT/CTAT-LR-fusion/wiki.

4.
Cell Rep Methods ; 3(5): 100467, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37323575

RESUMO

Here, we present FusionInspector for in silico characterization and interpretation of candidate fusion transcripts from RNA sequencing (RNA-seq) and exploration of their sequence and expression characteristics. We applied FusionInspector to thousands of tumor and normal transcriptomes and identified statistical and experimental features enriched among biologically impactful fusions. Through clustering and machine learning, we identified large collections of fusions potentially relevant to tumor and normal biological processes. We show that biologically relevant fusions are enriched for relatively high expression of the fusion transcript, imbalanced fusion allelic ratios, and canonical splicing patterns, and are deficient in sequence microhomologies between partner genes. We demonstrate that FusionInspector accurately validates fusion transcripts in silico and helps characterize numerous understudied fusions in tumor and normal tissue samples. FusionInspector is freely available as open source for screening, characterization, and visualization of candidate fusions via RNA-seq, and facilitates transparent explanation and interpretation of machine-learning predictions and their experimental sources.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias , Humanos , Neoplasias/genética , Análise de Sequência de RNA , Transcriptoma/genética
5.
Cancer Res ; 81(15): 3971-3984, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34099491

RESUMO

Gene fusions frequently result from rearrangements in cancer genomes. In many instances, gene fusions play an important role in oncogenesis; in other instances, they are thought to be passenger events. Although regulatory element rearrangements and copy number alterations resulting from these structural variants are known to lead to transcriptional dysregulation across cancers, the extent to which these events result in functional dependencies with an impact on cancer cell survival is variable. Here we used CRISPR-Cas9 dependency screens to evaluate the fitness impact of 3,277 fusions across 645 cell lines from the Cancer Dependency Map. We found that 35% of cell lines harbored either a fusion partner dependency or a collateral dependency on a gene within the same topologically associating domain as a fusion partner. Fusion-associated dependencies revealed numerous novel oncogenic drivers and clinically translatable alterations. Broadly, fusions can result in partner and collateral dependencies that have biological and clinical relevance across cancer types. SIGNIFICANCE: This study provides insights into how fusions contribute to fitness in different cancer contexts beyond partner-gene activation events, identifying partner and collateral dependencies that may have direct implications for clinical care.


Assuntos
Sobrevivência Celular/genética , Fusão Gênica/genética , Neoplasias/genética , Humanos
6.
Cell Syst ; 12(8): 827-838.e5, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34146471

RESUMO

The accurate identification and quantitation of RNA isoforms present in the cancer transcriptome is key for analyses ranging from the inference of the impacts of somatic variants to pathway analysis to biomarker development and subtype discovery. The ICGC-TCGA DREAM Somatic Mutation Calling in RNA (SMC-RNA) challenge was a crowd-sourced effort to benchmark methods for RNA isoform quantification and fusion detection from bulk cancer RNA sequencing (RNA-seq) data. It concluded in 2018 with a comparison of 77 fusion detection entries and 65 isoform quantification entries on 51 synthetic tumors and 32 cell lines with spiked-in fusion constructs. We report the entries used to build this benchmark, the leaderboard results, and the experimental features associated with the accurate prediction of RNA species. This challenge required submissions to be in the form of containerized workflows, meaning each of the entries described is easily reusable through CWL and Docker containers at https://github.com/SMC-RNA-challenge. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Isoformas de Proteínas/genética , RNA/genética , RNA-Seq , Análise de Sequência de RNA
7.
JCO Clin Cancer Inform ; 4: 421-435, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32383980

RESUMO

PURPOSE: The availability of increasing volumes of multiomics, imaging, and clinical data in complex diseases such as cancer opens opportunities for the formulation and development of computational imaging genomics methods that can link multiomics, imaging, and clinical data. METHODS: Here, we present the Imaging-AMARETTO algorithms and software tools to systematically interrogate regulatory networks derived from multiomics data within and across related patient studies for their relevance to radiography and histopathology imaging features predicting clinical outcomes. RESULTS: To demonstrate its utility, we applied Imaging-AMARETTO to integrate three patient studies of brain tumors, specifically, multiomics with radiography imaging data from The Cancer Genome Atlas (TCGA) glioblastoma multiforme (GBM) and low-grade glioma (LGG) cohorts and transcriptomics with histopathology imaging data from the Ivy Glioblastoma Atlas Project (IvyGAP) GBM cohort. Our results show that Imaging-AMARETTO recapitulates known key drivers of tumor-associated microglia and macrophage mechanisms, mediated by STAT3, AHR, and CCR2, and neurodevelopmental and stemness mechanisms, mediated by OLIG2. Imaging-AMARETTO provides interpretation of their underlying molecular mechanisms in light of imaging biomarkers of clinical outcomes and uncovers novel master drivers, THBS1 and MAP2, that establish relationships across these distinct mechanisms. CONCLUSION: Our network-based imaging genomics tools serve as hypothesis generators that facilitate the interrogation of known and uncovering of novel hypotheses for follow-up with experimental validation studies. We anticipate that our Imaging-AMARETTO imaging genomics tools will be useful to the community of biomedical researchers for applications to similar studies of cancer and other complex diseases with available multiomics, imaging, and clinical data.


Assuntos
Glioblastoma , Genômica por Imageamento , Biomarcadores , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Humanos , Radiografia , Software
8.
Evol Dev ; 22(4): 297-311, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32163674

RESUMO

Regenerative ability varies tremendously across species. A common feature of regeneration of appendages such as limbs, fins, antlers, and tails is the formation of a blastema-a transient structure that houses a pool of progenitor cells that can regenerate the missing tissue. We have identified the expression of von Willebrand factor D and EGF domains (vwde) as a common feature of blastemas capable of regenerating limbs and fins in a variety of highly regenerative species, including axolotl (Ambystoma mexicanum), lungfish (Lepidosiren paradoxa), and Polpyterus (Polypterus senegalus). Further, vwde expression is tightly linked to the ability to regenerate appendages in Xenopus laevis. Functional experiments demonstrate a requirement for vwde in regeneration and indicate that Vwde is a potent growth factor in the blastema. These data identify a key role for vwde in regenerating blastemas and underscore the power of an evolutionarily informed approach for identifying conserved genetic components of regeneration.


Assuntos
Ambystoma mexicanum/fisiologia , Nadadeiras de Animais/fisiologia , Extremidades/fisiologia , Peixes/fisiologia , Regeneração , Fator de von Willebrand/metabolismo , Animais , Evolução Biológica , Fator D do Complemento/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Evolução Molecular , Feminino , Masculino , Regeneração/genética
9.
Genome Biol ; 20(1): 213, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31639029

RESUMO

BACKGROUND: Accurate fusion transcript detection is essential for comprehensive characterization of cancer transcriptomes. Over the last decade, multiple bioinformatic tools have been developed to predict fusions from RNA-seq, based on either read mapping or de novo fusion transcript assembly. RESULTS: We benchmark 23 different methods including applications we develop, STAR-Fusion and TrinityFusion, leveraging both simulated and real RNA-seq. Overall, STAR-Fusion, Arriba, and STAR-SEQR are the most accurate and fastest for fusion detection on cancer transcriptomes. CONCLUSION: The lower accuracy of de novo assembly-based methods notwithstanding, they are useful for reconstructing fusion isoforms and tumor viruses, both of which are important in cancer research.


Assuntos
Fusão Gênica , Genômica/métodos , Neoplasias/metabolismo , Software , Transcriptoma , Benchmarking , Neoplasias/genética , Análise de Sequência de RNA
10.
Nature ; 569(7757): 503-508, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31068700

RESUMO

Large panels of comprehensively characterized human cancer models, including the Cancer Cell Line Encyclopedia (CCLE), have provided a rigorous framework with which to study genetic variants, candidate targets, and small-molecule and biological therapeutics and to identify new marker-driven cancer dependencies. To improve our understanding of the molecular features that contribute to cancer phenotypes, including drug responses, here we have expanded the characterizations of cancer cell lines to include genetic, RNA splicing, DNA methylation, histone H3 modification, microRNA expression and reverse-phase protein array data for 1,072 cell lines from individuals of various lineages and ethnicities. Integration of these data with functional characterizations such as drug-sensitivity, short hairpin RNA knockdown and CRISPR-Cas9 knockout data reveals potential targets for cancer drugs and associated biomarkers. Together, this dataset and an accompanying public data portal provide a resource for the acceleration of cancer research using model cancer cell lines.


Assuntos
Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/patologia , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Etnicidade/genética , Edição de Genes , Histonas/metabolismo , Humanos , MicroRNAs/genética , Terapia de Alvo Molecular , Neoplasias/metabolismo , Análise Serial de Proteínas , Splicing de RNA
11.
Nat Commun ; 9(1): 5153, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514844

RESUMO

Regeneration of complex multi-tissue structures, such as limbs, requires the coordinated effort of multiple cell types. In axolotl limb regeneration, the wound epidermis and blastema have been extensively studied via histology, grafting, and bulk-tissue RNA-sequencing. However, defining the contributions of these tissues is hindered due to limited information regarding the molecular identity of the cell types in regenerating limbs. Here we report unbiased single-cell RNA-sequencing on over 25,000 cells from axolotl limbs and identify a plethora of cellular diversity within epidermal, mesenchymal, and hematopoietic lineages in homeostatic and regenerating limbs. We identify regeneration-induced genes, develop putative trajectories for blastema cell differentiation, and propose the molecular identity of fibroblast-like blastema progenitor cells. This work will enable application of molecular techniques to assess the contribution of these populations to limb regeneration. Overall, these data allow for establishment of a putative framework for adult axolotl limb regeneration.


Assuntos
Extremidades/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regeneração , Transcriptoma , Ambystoma mexicanum/genética , Ambystoma mexicanum/fisiologia , Experimentação Animal , Animais , Diferenciação Celular , Linhagem da Célula , Células Epidérmicas , Epiderme/patologia , Epiderme/fisiologia , Extremidades/embriologia , Extremidades/patologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Sistema Imunitário/fisiologia , Hibridização In Situ , Macrófagos , Células-Tronco Mesenquimais , Células Mieloides/fisiologia , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Regeneração/genética , Análise de Sequência de RNA , Células-Tronco/citologia , Células-Tronco/fisiologia
12.
Genome Res ; 25(12): 1860-72, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26430063

RESUMO

Both intrinsic cell state changes and variations in the composition of stem cell populations have been implicated as contributors to aging. We used single-cell RNA-seq to dissect variability in hematopoietic stem cell (HSC) and hematopoietic progenitor cell populations from young and old mice from two strains. We found that cell cycle dominates the variability within each population and that there is a lower frequency of cells in the G1 phase among old compared with young long-term HSCs, suggesting that they traverse through G1 faster. Moreover, transcriptional changes in HSCs during aging are inversely related to those upon HSC differentiation, such that old short-term (ST) HSCs resemble young long-term (LT-HSCs), suggesting that they exist in a less differentiated state. Our results indicate both compositional changes and intrinsic, population-wide changes with age and are consistent with a model where a relationship between cell cycle progression and self-renewal versus differentiation of HSCs is affected by aging and may contribute to the functional decline of old HSCs.


Assuntos
Ciclo Celular/genética , Diferenciação Celular/genética , Senescência Celular/genética , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Fatores Etários , Animais , Biomarcadores , Análise por Conglomerados , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Modelos Biológicos , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Especificidade de Órgãos/genética , Fenótipo , Análise de Sequência de RNA , Análise de Célula Única , Transcrição Gênica , Transcriptoma
13.
mBio ; 5(6): e01864, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25370491

RESUMO

UNLABELLED: The diverse Fusobacterium genus contains species implicated in multiple clinical pathologies, including periodontal disease, preterm birth, and colorectal cancer. The lack of genetic tools for manipulating these organisms leaves us with little understanding of the genes responsible for adherence to and invasion of host cells. Actively invading Fusobacterium species can enter host cells independently, whereas passively invading species need additional factors, such as compromise of mucosal integrity or coinfection with other microbes. We applied whole-genome sequencing and comparative analysis to study the evolution of active and passive invasion strategies and to infer factors associated with active forms of host cell invasion. The evolution of active invasion appears to have followed an adaptive radiation in which two of the three fusobacterial lineages acquired new genes and underwent expansions of ancestral genes that enable active forms of host cell invasion. Compared to passive invaders, active invaders have much larger genomes, encode FadA-related adhesins, and possess twice as many genes encoding membrane-related proteins, including a large expansion of surface-associated proteins containing the MORN2 domain of unknown function. We predict a role for proteins containing MORN2 domains in adhesion and active invasion. In the largest and most comprehensive comparison of sequenced Fusobacterium species to date, we have generated a testable model for the molecular pathogenesis of Fusobacterium infection and illuminate new therapeutic or diagnostic strategies. IMPORTANCE: Fusobacterium species have recently been implicated in a broad spectrum of human pathologies, including Crohn's disease, ulcerative colitis, preterm birth, and colorectal cancer. Largely due to the genetic intractability of member species, the mechanisms by which Fusobacterium causes these pathologies are not well understood, although adherence to and active invasion of host cells appear important. We examined whole-genome sequence data from a diverse set of Fusobacterium species to identify genetic determinants of active forms of host cell invasion. Our analyses revealed that actively invading Fusobacterium species have larger genomes than passively invading species and possess a specific complement of genes-including a class of genes of unknown function that we predict evolved to enable host cell adherence and invasion. This study provides an important framework for future studies on the role of Fusobacterium in pathologies such as colorectal cancer.


Assuntos
Aderência Bacteriana , Endocitose , Fusobacterium/fisiologia , Genes Bacterianos , Genoma Bacteriano , Fatores de Virulência/genética , Evolução Molecular , Fusobacterium/genética , Fusobacterium/crescimento & desenvolvimento , Análise de Sequência de DNA , Virulência
14.
Bioinformatics ; 29(19): 2387-94, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23904509

RESUMO

MOTIVATION: Kinases of the eukaryotic protein kinase superfamily are key regulators of most aspects eukaryotic cellular behavior and have provided several drug targets including kinases dysregulated in cancers. The rapid increase in the number of genomic sequences has created an acute need to identify and classify members of this important class of enzymes efficiently and accurately. RESULTS: Kinannote produces a draft kinome and comparative analyses for a predicted proteome using a single line command, and it is currently the only tool that automatically classifies protein kinases using the controlled vocabulary of Hanks and Hunter [Hanks and Hunter (1995)]. A hidden Markov model in combination with a position-specific scoring matrix is used by Kinannote to identify kinases, which are subsequently classified using a BLAST comparison with a local version of KinBase, the curated protein kinase dataset from www.kinase.com. Kinannote was tested on the predicted proteomes from four divergent species. The average sensitivity and precision for kinome retrieval from the test species are 94.4 and 96.8%. The ability of Kinannote to classify identified kinases was also evaluated, and the average sensitivity and precision for full classification of conserved kinases are 71.5 and 82.5%, respectively. Kinannote has had a significant impact on eukaryotic genome annotation, providing protein kinase annotations for 36 genomes made public by the Broad Institute in the period spanning 2009 to the present. AVAILABILITY: Kinannote is freely available at http://sourceforge.net/projects/kinannote.


Assuntos
Células Eucarióticas/enzimologia , Proteínas Quinases/classificação , Algoritmos , Genoma , Internet , Matrizes de Pontuação de Posição Específica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteoma/genética , Design de Software
15.
Nat Protoc ; 8(8): 1494-512, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23845962

RESUMO

De novo assembly of RNA-seq data enables researchers to study transcriptomes without the need for a genome sequence; this approach can be usefully applied, for instance, in research on 'non-model organisms' of ecological and evolutionary importance, cancer samples or the microbiome. In this protocol we describe the use of the Trinity platform for de novo transcriptome assembly from RNA-seq data in non-model organisms. We also present Trinity-supported companion utilities for downstream applications, including RSEM for transcript abundance estimation, R/Bioconductor packages for identifying differentially expressed transcripts across samples and approaches to identify protein-coding genes. In the procedure, we provide a workflow for genome-independent transcriptome analysis leveraging the Trinity platform. The software, documentation and demonstrations are freely available from http://trinityrnaseq.sourceforge.net. The run time of this protocol is highly dependent on the size and complexity of data to be analyzed. The example data set analyzed in the procedure detailed herein can be processed in less than 5 h.


Assuntos
Perfilação da Expressão Gênica/métodos , RNA/química , Software , Transcriptoma , Sequência de Bases , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Análise de Sequência de RNA/métodos
16.
PLoS Genet ; 7(10): e1002345, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22046142

RESUMO

Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.


Assuntos
Onygenales/genética , Paracoccidioides/genética , Paracoccidioidomicose/microbiologia , Proteínas Quinases/genética , Metabolismo dos Carboidratos/genética , Sistemas de Liberação de Medicamentos , Evolução Molecular , Genoma Fúngico , Genoma Mitocondrial/genética , Humanos , Família Multigênica/genética , Onygenales/enzimologia , Paracoccidioides/enzimologia , Filogenia , Proteólise , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA
17.
Eukaryot Cell ; 10(11): 1422-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21926333

RESUMO

Splicing of mRNA is an ancient and evolutionarily conserved process in eukaryotic organisms, but intron-exon structures vary. Plasmodium falciparum has an extreme AT nucleotide bias (>80%), providing a unique opportunity to investigate how evolutionary forces have acted on intron structures. In this study, we developed an in vivo luciferase reporter splicing assay and employed it in combination with lariat isolation and sequencing to characterize 5' and 3' splicing requirements and experimentally determine the intron branch point in P. falciparum. This analysis indicates that P. falciparum mRNAs have canonical 5' and 3' splice sites. However, the 5' consensus motif is weakly conserved and tolerates nucleotide substitution, including the fifth nucleotide in the intron, which is more typically a G nucleotide in most eukaryotes. In comparison, the 3' splice site has a strong eukaryotic consensus sequence and adjacent polypyrimidine tract. In four different P. falciparum pre-mRNAs, multiple branch points per intron were detected, with some at U instead of the typical A residue. A weak branch point consensus was detected among 18 identified branch points. This analysis indicates that P. falciparum retains many consensus eukaryotic splice site features, despite having an extreme codon bias, and possesses flexibility in branch point nucleophilic attack.


Assuntos
Íntrons/genética , Plasmodium falciparum/genética , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Sequência de Bases , Plasmodium falciparum/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Análise de Sequência de DNA
18.
Nat Biotechnol ; 28(9): 951-6, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20729833

RESUMO

Castor bean (Ricinus communis) is an oilseed crop that belongs to the spurge (Euphorbiaceae) family, which comprises approximately 6,300 species that include cassava (Manihot esculenta), rubber tree (Hevea brasiliensis) and physic nut (Jatropha curcas). It is primarily of economic interest as a source of castor oil, used for the production of high-quality lubricants because of its high proportion of the unusual fatty acid ricinoleic acid. However, castor bean genomics is also relevant to biosecurity as the seeds contain high levels of ricin, a highly toxic, ribosome-inactivating protein. Here we report the draft genome sequence of castor bean (4.6-fold coverage), the first for a member of the Euphorbiaceae. Whereas most of the key genes involved in oil synthesis and turnover are single copy, the number of members of the ricin gene family is larger than previously thought. Comparative genomics analysis suggests the presence of an ancient hexaploidization event that is conserved across the dicotyledonous lineage.


Assuntos
Sequência de Bases , Genoma de Planta/genética , Ricinus communis/genética , Sementes/genética , Genes de Plantas/genética , Imunidade Inata/genética , Anotação de Sequência Molecular , Família Multigênica/genética , Óleos de Plantas/metabolismo , Poliploidia , Estrutura Terciária de Proteína , Sequências Repetitivas de Ácido Nucleico/genética , Ricina/química , Ricina/genética , Análise de Sequência de DNA
19.
Science ; 328(5981): 994-9, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20489017

RESUMO

The human microbiome refers to the community of microorganisms, including prokaryotes, viruses, and microbial eukaryotes, that populate the human body. The National Institutes of Health launched an initiative that focuses on describing the diversity of microbial species that are associated with health and disease. The first phase of this initiative includes the sequencing of hundreds of microbial reference genomes, coupled to metagenomic sequencing from multiple body sites. Here we present results from an initial reference genome sequencing of 178 microbial genomes. From 547,968 predicted polypeptides that correspond to the gene complement of these strains, previously unidentified ("novel") polypeptides that had both unmasked sequence length greater than 100 amino acids and no BLASTP match to any nonreference entry in the nonredundant subset were defined. This analysis resulted in a set of 30,867 polypeptides, of which 29,987 (approximately 97%) were unique. In addition, this set of microbial genomes allows for approximately 40% of random sequences from the microbiome of the gastrointestinal tract to be associated with organisms based on the match criteria used. Insights into pan-genome analysis suggest that we are still far from saturating microbial species genetic data sets. In addition, the associated metrics and standards used by our group for quality assurance are presented.


Assuntos
Genoma Bacteriano , Metagenoma/genética , Análise de Sequência de DNA , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biodiversidade , Biologia Computacional , Bases de Dados Genéticas , Trato Gastrointestinal/microbiologia , Genes Bacterianos , Variação Genética , Genoma Arqueal , Humanos , Metagenômica/métodos , Metagenômica/normas , Boca/microbiologia , Peptídeos/química , Peptídeos/genética , Filogenia , Sistema Respiratório/microbiologia , Análise de Sequência de DNA/normas , Pele/microbiologia , Sistema Urogenital/microbiologia
20.
BMC Genomics ; 9: 58, 2008 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18234080

RESUMO

BACKGROUND: Musa species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning Musa genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of Musa genomic sequence have been conducted. This study compares genomic sequence in two Musa species with orthologous regions in the rice genome. RESULTS: We produced 1.4 Mb of Musa sequence from 13 BAC clones, annotated and analyzed them along with 4 previously sequenced BACs. The 443 predicted genes revealed that Zingiberales genes share GC content and distribution characteristics with eudicot and Poaceae genomes. Comparison with rice revealed microsynteny regions that have persisted since the divergence of the Commelinid orders Poales and Zingiberales at least 117 Mya. The previously hypothesized large-scale duplication event in the common ancestor of major cereal lineages within the Poaceae was verified. The divergence time distributions for Musa-Zingiber (Zingiberaceae, Zingiberales) orthologs and paralogs provide strong evidence for a large-scale duplication event in the Musa lineage after its divergence from the Zingiberaceae approximately 61 Mya. Comparisons of genomic regions from M. acuminata and M. balbisiana revealed highly conserved genome structure, and indicated that these genomes diverged circa 4.6 Mya. CONCLUSION: These results point to the utility of comparative analyses between distantly-related monocot species such as rice and Musa for improving our understanding of monocot genome evolution. Sequencing the genome of M. acuminata would provide a strong foundation for comparative genomics in the monocots. In addition a genome sequence would aid genomic and genetic analyses of cultivated Musa polyploid genotypes in research aimed at localizing and cloning genes controlling important agronomic traits for breeding purposes.


Assuntos
Genoma de Planta/genética , Musa/classificação , Musa/genética , Oryza/genética , Sintenia/genética , Arabidopsis/genética , Composição de Bases , Cromossomos Artificiais Bacterianos , Elementos de DNA Transponíveis/genética , DNA Complementar/genética , Evolução Molecular , Etiquetas de Sequências Expressas , Duplicação Gênica , Genes de Plantas/genética , Musa/enzimologia , Oryza/enzimologia , Polimorfismo de Fragmento de Restrição , Sequências Repetitivas de Ácido Nucleico/genética , Sorghum/genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA