Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 26: 84-94, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35795779

RESUMO

Drug-inducible suicide systems may help to minimize risks of human induced pluripotent stem cell (hiPSC) therapies. Recent research challenged the usefulness of such systems since rare drug-resistant subclones were observed. We have introduced a drug-inducible Caspase 9 suicide system (iCASP9) into the AAVS1 safe-harbor locus of hiPSCs. In these cells, apoptosis could be efficiently induced in vitro. After transplantation into mice, drug treatment generally led to rapid elimination of teratomas, but single animals subsequently formed tumor tissue from monoallelic iCASP9 hiPSCs. Very rare drug-resistant subclones of monoallelic iCASP9 hiPSCs appeared in vitro with frequencies of ∼ 3 × 10-8. Besides transgene elimination, presumably via loss of heterozygosity (LoH), silencing via aberrant promoter methylation was identified as a major underlying mechanism. In contrast to monoallelic iCASP9 hiPSCs, no escapees from biallelic iCASP9 cells were observed after treatment of up to 0.8 billion hiPSCs. The highly increased safety level provided by biallelic integration of the iCASP9 system may substantially contribute to the safety level of iPSC-based therapies.

2.
Stem Cell Res ; 60: 102697, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35152180

RESUMO

Calcium plays a key role in cardiomyocytes (CMs) for the translation of the electrical impulse of an action potential into contraction forces. A rapid, not-invasive fluorescence imaging technology allows for the monitoring of calcium transients in human induced pluripotent stem cell derived-cardiomyocytes (hiPSC-CMs) to investigate the cardiac electrophysiology in vitro and after cell transplantation in vivo. The genetically encoded calcium indicators (GECIs) GCaMP6f or RCaMP1h were successfully transfected in the previously established hiPSC line MHHi001-A, together with a cardiac specific antibiotic selection cassette facilitating the monitoring of the calcium handling in highly pure populations of hiPSC-CMs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Potenciais de Ação , Cálcio/metabolismo , Diferenciação Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo
3.
Mol Ther ; 29(8): 2535-2553, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33831558

RESUMO

Cellular therapies based on induced pluripotent stem cells (iPSCs) come out of age and an increasing number of clinical trials applying iPSC-based transplants are ongoing or in preparation. Recent studies, however, demonstrated a high number of small-scale mutations in iPSCs. Although the mutational load in iPSCs seems to be largely derived from their parental cells, it is still unknown whether reprogramming may enrich for individual mutations that could lead to loss of functionality and tumor formation from iPSC derivatives. 30 hiPSC lines were analyzed by whole exome sequencing. High accuracy amplicon sequencing showed that all analyzed small-scale variants pre-existed in their parental cells and that individual mutations present in small subpopulations of parental cells become enriched among hiPSC clones during reprogramming. Among those, putatively actionable driver mutations affect genes related to cell-cycle control, cell death, and pluripotency and may confer a selective advantage during reprogramming. Finally, a short hairpin RNA (shRNA)-based experimental approach was applied to provide additional evidence for the individual impact of such genes on the reprogramming efficiency. In conclusion, we show that enriched mutations in curated onco- and tumor suppressor genes may account for an increased tumor risk and impact the clinical value of patient-derived hiPSCs.


Assuntos
Células Clonais/citologia , Sequenciamento do Exoma/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Mutação , Neoplasias/genética , Idoso , Ciclo Celular , Morte Celular , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Reprogramação Celular , Células Clonais/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Pluripotentes Induzidas/química , Neoplasias/patologia
4.
Stem Cell Res ; 48: 101988, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32950024

RESUMO

Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by defects in motile cilia and is known to occur in about 1 in 20,000 live births (Horani and Ferkol, 2018). Among the many genes associated with PCD, NME5, a gene encoding a protein involved in ciliary function, was recently reported to be involved in PCD (Anderegg et al., 2019; Cho et al., 2020). We have established two human induced pluripotent stem cell clones from a PCD patient carrying a deletion in the NME5 gene (c.415delA (p.Ile139Tyrfs*8)).


Assuntos
Transtornos da Motilidade Ciliar , Células-Tronco Pluripotentes Induzidas , Cílios , Transtornos da Motilidade Ciliar/genética , Células Clonais , Homozigoto , Humanos , Mutação , Nucleosídeo NM23 Difosfato Quinases , Deleção de Sequência
5.
Stem Cell Res ; 44: 101744, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32220772

RESUMO

Cystic Fibrosis (CF) is a genetic disease caused by mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene which encodes for a chloride ion channel regulating the balance of salt and water across secretory epithelia. Here we generated an iPSC line from a CF patient homozygous for the p.Asn1303Lys mutation, a Class II folding defect mutation. This iPSC line provides a useful resource for disease modeling and to investigate the pharmacological response to CFTR modulators in iPSC derived epithelia.


Assuntos
Fibrose Cística , Células-Tronco Pluripotentes Induzidas , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Homozigoto , Humanos , Mutação
6.
Stem Cell Res ; 35: 101394, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30772682

RESUMO

The utilization of human induced pluripotent stem cells (hiPSCs) for disease modeling and drug discovery is already reality, and several first-in-man-applications as cellular therapeutics have been initiated. Implementation of good manufacturing practice (GMP)-compliant protocols for the generation of hiPSC lines is crucial to increase the application safety as well as to fulfil the legal requirements for clinical trials approval. Here we describe the development of a GMP-compatible protocol for the reprogramming of CD34+ hematopoietic stem cells from peripheral blood (CD34+ PBHSC) into hiPSCs using Sendai virus-based reprogramming vectors. Three GMP-compatible hiPSC (GMP-hiPSC) lines were manufactured and characterized under these conditions.


Assuntos
Linhagem Celular , Técnicas de Reprogramação Celular , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo
7.
BMC Res Notes ; 11(1): 54, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29357945

RESUMO

OBJECTIVE: Pannexins are channel proteins important for the release of calcium and adenosine triphosphate, which are among other functions involved in early development. Here, the expression of pannexins was investigated in induced pluripotent stem cells derived from human cord blood endothelial cells (hCBiPS2), in hematopoietic stem cell-derived induced pluripotent stem cells (HSC_F1285_T-iPS2) and in human embryonic stem cells (HES-3). The expression of pannexin (Panx) 1-3 mRNAs was analyzed in all three undifferentiated stem cell lines. Stem cells then underwent undirected differentiation into embryoid bodies and were analyzed regarding expression of germ layer-specific genes. RESULTS: Panx1, Panx2, and Panx3 mRNAs were expressed in all undifferentiated stem cell lines investigated. In comparison, Panx1 showed the highest expression among all pannexins. The undirected differentiation resulted in a mixed germ layer genotype in all three stem cell lines. Whereas the expression of Panx1 was not affected by differentiation, the expression of Panx2 was slightly increased in differentiated hCBiPS2 cells, HSC_F1285_T-iPS2 as well as HES3 cells as compared to their undifferentiated counterparts. A slight increase of Panx3 expression was observed in differentiated hCBiPS2 cells only. In conclusion, pluripotent stem cells express all three pannexin genes.


Assuntos
Conexinas/genética , Expressão Gênica , Proteínas do Tecido Nervoso/genética , Células-Tronco/metabolismo , Linhagem Celular , Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Sangue Fetal/citologia , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células-Tronco/citologia
8.
Cell Transplant ; 24(10): 2099-112, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25420114

RESUMO

Human induced pluripotent stem cells (hiPSCs) are promising sources for regenerative therapies like the replacement of dopaminergic neurons in Parkinson's disease. They offer an unlimited cell source that can be standardized and optimized to produce applicable cell populations to gain maximal functional recovery. In the present study, human cord blood-derived iPSCs (hCBiPSCs) were differentiated into dopaminergic neurons utilizing two different in vitro protocols for neural induction: (protocol I) by fibroblast growth factor (FGF-2) signaling, (protocol II) by bone morphogenetic protein (BMP)/transforming growth factor (TGF-ß) inhibition. After maturation, in vitro increased numbers of tyrosine hydroxylase (TH)-positive neurons (7.4% of total cells) were observed by protocol II compared to 3.5% in protocol I. Furthermore, 3 weeks after transplantation in hemiparkinsonian rats in vivo, a reduced number of undifferentiated proliferating cells was achieved with protocol II. In contrast, proliferation still occurred in protocol I-derived grafts, resulting in tumor-like growth in two out of four animals 3 weeks after transplantation. Protocol II, however, did not increase the number of TH(+) cells in the striatal grafts of hemiparkinsonian rats. In conclusion, BMP/TGF-ß inhibition was more effective than FGF-2 signaling with regard to dopaminergic induction of hCBiPSCs in vitro and prevented graft overgrowth in vivo.


Assuntos
Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Neurônios Dopaminérgicos/citologia , Sangue Fetal/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Transplante de Células-Tronco , Animais , Células Cultivadas , Corpo Estriado/citologia , Feminino , Humanos , Lentivirus/metabolismo , Neostriado/citologia , Ratos Sprague-Dawley , Transplante de Células-Tronco/métodos
9.
Stem Cells Dev ; 23(24): 3011-20, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25007389

RESUMO

Induced pluripotent stem cells (iPSCs) have become the most promising candidates for in vitro modeling of motor neuron (MN) diseases, such as amyotrophic lateral sclerosis (ALS), and possibly for future therapeutic implementation in regenerative medicine. We here present for the first time the differentiation of human cord-blood-derived iPSCs (hCBiPSCs) into MNs, the cell type primarily affected in ALS. In contrast to iPSCs generated from adult tissue, the hCBiPSCs used in this study hold the promise of lower genetic mutation burden or epigenetic alterations, which makes them ideal candidates for transplantation studies. Small-molecule-derived neural precursor cells (smNPCs) were generated from hCBiPSCs and used for the following differentiation studies to substantially shorten MN differentiation time. Consequently, as early as 18 days of in vitro differentiation, the MNs stained positive for neuronal- and for MN-specific markers accompanied by respective gene expression patterns. To demonstrate that the hCBiPSC-derived neural precursor cells (smNPCs) can be differentiated into functional MNs, the cells were characterized by calcium imaging and patch-clamp analysis. Calcium imaging detected the expression of functional voltage-dependent calcium and ligand-gated channels of several important neurotransmitters. Using whole-cell patch-clamp recordings, we observed functional neuronal properties like sodium-inward currents and action potentials (APs). Some cells showed spontaneous APs and synaptic activity that are signs of essential functional maturation. Having established a rapid and efficient method to generate functional MNs from hCBiPSCs, we demonstrate the differentiation potential of genetically unbiased hCBiPSCs as promising source for transplantation studies and also create a framework for future in-vitro disease modeling.


Assuntos
Sangue Fetal/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios Motores/citologia , Células-Tronco Neurais/citologia , Neurogênese , Potenciais de Ação , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Potenciais Sinápticos
10.
Cell Reprogram ; 14(6): 471-84, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23194451

RESUMO

Induced pluripotent stem cells (iPSCs) represent a novel cell source for regenerative therapies. Many emerging iPSC-based therapeutic concepts will require preclinical evaluation in suitable large animal models. Among the large animal species frequently used in preclinical efficacy and safety studies, macaques show the highest similarities to humans at physiological, cellular, and molecular levels. We have generated iPSCs from cynomolgus monkeys (Macaca fascicularis) as a segue to regenerative therapy model development in this species. Because typical human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors show poor transduction of simian cells, a simian immunodeficiency virus (SIV)-based vector was chosen for efficient transduction of cynomolgus skin fibroblasts. A corresponding polycistronic vector with codon-optimized reprogramming factors was constructed for reprogramming. Growth characteristics as well as cell and colony morphology of the resulting cynomolgus iPSCs (cyiPSCs) were demonstrated to be almost identical to cynomolgus embryonic stem cells (cyESCs), and cyiPSCs expressed typical pluripotency markers including OCT4, SOX2, and NANOG. Furthermore, differentiation in vivo and in vitro into derivatives of all three germ layers, as well as generation of functional cardiomyocytes, could be demonstrated. Finally, a highly efficient technique for generation of transgenic cyiPSC clones with stable reporter expression in undifferentiated cells as well as differentiated transgenic cyiPSC progeny was developed to enable cell tracking in recipient animals. In conclusion, our data indicate that cyiPSCs represent a valuable cell source for establishment of macaque-based allogeneic and autologous preclinical cell transplantation models for various fields of regenerative medicine.


Assuntos
Vetores Genéticos , Células-Tronco Pluripotentes Induzidas , Vírus da Imunodeficiência Símia , Fatores de Transcrição/biossíntese , Transdução Genética , Animais , Desdiferenciação Celular/genética , Células Cultivadas , HIV-1 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Macaca fascicularis , Fatores de Transcrição/genética
11.
Cell Stem Cell ; 5(4): 434-41, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19796623

RESUMO

Induced pluripotent stem cells (iPSCs) may represent an ideal cell source for future regenerative therapies. A critical issue concerning the clinical use of patient-specific iPSCs is the accumulation of mutations in somatic (stem) cells over an organism's lifetime. Acquired somatic mutations are passed onto iPSCs during reprogramming and may be associated with loss of cellular functions and cancer formation. Here we report the generation of human iPSCs from cord blood (CB) as a juvenescent cell source. CBiPSCs show characteristics typical of embryonic stem cells and can be differentiated into derivatives of all three germ layers, including functional cardiomyocytes. For future therapeutic production of autologous and allogeneic iPSC derivatives, CB could be routinely harvested for public and commercial CB banks without any donor risk. CB could readily become available for pediatric patients and, in particular, for newborns with genetic diseases or congenital malformations.


Assuntos
Sangue Fetal/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA