Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Inherit Metab Dis ; 46(5): 956-971, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37340906

RESUMO

NANS-CDG is a congenital disorder of glycosylation (CDG) caused by biallelic variants in NANS, encoding an essential enzyme in de novo sialic acid synthesis. It presents with intellectual developmental disorder (IDD), skeletal dysplasia, neurologic impairment, and gastrointestinal dysfunction. Some patients suffer progressive intellectual neurologic deterioration (PIND), emphasizing the need for a therapy. In a previous study, sialic acid supplementation in knockout nansa zebrafish partially rescued skeletal abnormalities. Here, we performed the first in-human pre- and postnatal sialic-acid study in NANS-CDG. In this open-label observational study, 5 patients with NANS-CDG (range 0-28 years) were treated with oral sialic acid for 15 months. The primary outcome was safety. Secondary outcomes were psychomotor/cognitive testing, height and weight, seizure control, bone health, gastrointestinal symptoms, and biochemical and hematological parameters. Sialic acid was well tolerated. In postnatally treated patients, there was no significant improvement. For the prenatally treated patient, psychomotor and neurologic development was better than two other genotypically identical patients (one treated postnatally, one untreated). The effect of sialic acid treatment may depend on the timing, with prenatal treatment potentially benefiting neurodevelopmental outcomes. Evidence is limited, however, and longer-term follow-up in a larger number of prenatally treated patients is required.


Assuntos
Defeitos Congênitos da Glicosilação , Ácido N-Acetilneuramínico , Animais , Humanos , Projetos Piloto , Peixe-Zebra , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/genética , Suplementos Nutricionais
3.
Front Neurol ; 12: 668640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163424

RESUMO

Background: NANS-CDG is a recently described congenital disorder of glycosylation caused by biallelic genetic variants in NANS, encoding an essential enzyme in de novo sialic acid synthesis. Sialic acid at the end of glycoconjugates plays a key role in biological processes such as brain and skeletal development. Here, we present an observational cohort study to delineate the genetic, biochemical, and clinical phenotype and assess possible correlations. Methods: Medical and laboratory records were reviewed with retrospective extraction and analysis of genetic, biochemical, and clinical data (2016-2020). Results: Nine NANS-CDG patients (nine families, six countries) referred to the Radboudumc CDG Center of Expertise were included. Phenotyping confirmed the hallmark features including intellectual developmental disorder (IDD) (n = 9/9; 100%), facial dysmorphisms (n = 9/9; 100%), neurologic impairment (n = 9/9; 100%), short stature (n = 8/9; 89%), skeletal dysplasia (n = 8/9; 89%), and short limbs (n = 8/9; 89%). Newly identified features include ophthalmological abnormalities (n = 6/9; 67%), an abnormal septum pellucidum (n = 6/9; 67%), (progressive) cerebral atrophy and ventricular dilatation (n = 5/9; 56%), gastrointestinal dysfunction (n = 5/9; 56%), thrombocytopenia (n = 5/9; 56%), and hypo-low-density lipoprotein cholesterol (n = 4/9; 44%). Biochemically, elevated urinary excretion of N-acetylmannosamine (ManNAc) is pathognomonic, the concentrations of which show a significant correlation with clinical severity. Genotypically, eight novel NANS variants were identified. Three severely affected patients harbored identical compound heterozygous pathogenic variants, one of whom was initiated on experimental prenatal and postnatal treatment with oral sialic acid. This patient showed markedly better psychomotor development than the other two genotypically identical males. Conclusions: ManNAc screening should be considered in all patients with IDD, short stature with short limbs, facial dysmorphisms, neurologic impairment, and an abnormal septum pellucidum +/- congenital and neurodegenerative lesions on brain imaging, to establish a precise diagnosis and contribute to prognostication. Personalized management includes accurate genetic counseling and access to proper supports and tailored care for gastrointestinal symptoms, thrombocytopenia, and epilepsy, as well as rehabilitation services for cognitive and physical impairments. Motivated by the short-term positive effects of experimental treatment with oral sialic, we have initiated this intervention with protocolized follow-up of neurologic, systemic, and growth outcomes in four patients. Research is ongoing to unravel pathophysiology and identify novel therapeutic targets.

4.
Hum Mol Genet ; 29(13): 2218-2239, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32504085

RESUMO

The RNA exosome is an essential ribonuclease complex required for processing and/or degradation of both coding and non-coding RNAs. We identified five patients with biallelic variants in EXOSC5, which encodes a structural subunit of the RNA exosome. The clinical features of these patients include failure to thrive, short stature, feeding difficulties, developmental delays that affect motor skills, hypotonia and esotropia. Brain MRI revealed cerebellar hypoplasia and ventriculomegaly. While we ascertained five patients, three patients with distinct variants of EXOSC5 were studied in detail. The first patient had a deletion involving exons 5-6 of EXOSC5 and a missense variant, p.Thr114Ile, that were inherited in trans, the second patient was homozygous for p.Leu206His and the third patient had paternal isodisomy for chromosome 19 and was homozygous for p.Met148Thr. The additional two patients ascertained are siblings who had an early frameshift mutation in EXOSC5 and the p.Thr114Ile missense variant that were inherited in trans. We employed three complementary approaches to explore the requirement for EXOSC5 in brain development and assess consequences of pathogenic EXOSC5 variants. Loss of function for exosc5 in zebrafish results in shortened and curved tails/bodies, reduced eye/head size and edema. We modeled pathogenic EXOSC5 variants in both budding yeast and mammalian cells. Some of these variants cause defects in RNA exosome function as well as altered interactions with other RNA exosome subunits. These findings expand the number of genes encoding RNA exosome subunits linked to human disease while also suggesting that disease mechanism varies depending on the specific pathogenic variant.


Assuntos
Antígenos de Neoplasias/genética , Cerebelo/anormalidades , Deficiências do Desenvolvimento/genética , Nanismo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Malformações do Sistema Nervoso/genética , Proteínas de Ligação a RNA/genética , Animais , Cerebelo/patologia , Deficiências do Desenvolvimento/patologia , Nanismo/patologia , Mutação da Fase de Leitura/genética , Homozigoto , Humanos , Mutação de Sentido Incorreto/genética , Malformações do Sistema Nervoso/patologia , Linhagem , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
5.
Clin Genet ; 97(4): 556-566, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31957011

RESUMO

NGLY1 encodes the enzyme N-glycanase that is involved in the degradation of glycoproteins as part of the endoplasmatic reticulum-associated degradation pathway. Variants in this gene have been described to cause a multisystem disease characterized by neuromotor impairment, neuropathy, intellectual disability, and dysmorphic features. Here, we describe four patients with pathogenic variants in NGLY1. As the clinical features and laboratory results of the patients suggested a multisystem mitochondrial disease, a muscle biopsy had been performed. Biochemical analysis in muscle showed a strongly reduced ATP production rate in all patients, while individual OXPHOS enzyme activities varied from normal to reduced. No causative variants in any mitochondrial disease genes were found using mtDNA analysis and whole exome sequencing. In all four patients, variants in NGLY1 were identified, including two unreported variants (c.849T>G (p.(Cys283Trp)) and c.1067A>G (p.(Glu356Gly)). Western blot analysis of N-glycanase in muscle and fibroblasts showed a complete absence of N-glycanase. One patient showed a decreased basal and maximal oxygen consumption rates in fibroblasts. Mitochondrial morphofunction fibroblast analysis showed patient specific differences when compared to control cell lines. In conclusion, variants in NGLY1 affect mitochondrial energy metabolism which in turn might contribute to the clinical disease course.


Assuntos
Epilepsias Mioclônicas/genética , Deficiência Intelectual/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Polineuropatias/genética , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/diagnóstico por imagem , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Epilepsias Mioclônicas/diagnóstico por imagem , Epilepsias Mioclônicas/patologia , Feminino , Humanos , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/patologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação/genética , Polineuropatias/diagnóstico por imagem , Polineuropatias/patologia
6.
Orphanet J Rare Dis ; 13(1): 86, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-30012219

RESUMO

BACKGROUND: ATP8A2 mutations have recently been described in several patients with severe, early-onset hypotonia and cognitive impairment. The aim of our study was to characterize the clinical phenotype of patients with ATP8A2 mutations. METHODS: An observational study was conducted at multiple diagnostic centres. Clinical data is presented from 9 unreported and 2 previously reported patients with ATP8A2 mutations. We compare their features with 3 additional patients that have been previously reported in the medical literature. RESULTS: Eleven patients with biallelic ATP8A2 mutations were identified, with a mean age of 9.4 years (range 2.5-28 years). All patients with ATP8A2 mutations (100%) demonstrated developmental delay, severe hypotonia and movement disorders, specifically chorea or choreoathetosis (100%), dystonia (27%) and facial dyskinesia (18%). Optic atrophy was observed in 78% of patients for whom funduscopic examination was performed. Symptom onset in all (100%) was noted before 6 months of age, with 70% having symptoms noted at birth. Feeding difficulties were common (91%) although most patients were able to tolerate pureed or thickened feeds, and 3 patients required gastrostomy tube insertion. MRI of the brain was normal in 50% of the patients. A smaller proportion was noted to have mild cortical atrophy (30%), delayed myelination (20%) and/or hypoplastic optic nerves (20%). Functional studies were performed on differentiated induced pluripotent cells from one child, which confirmed a decrease in ATP8A2 expression compared to control cells. CONCLUSIONS: ATP8A2 gene mutations have emerged as the cause of a novel neurological phenotype characterized by global developmental delays, severe hypotonia and hyperkinetic movement disorders, the latter being an important distinguishing feature. Optic atrophy is common and may only become apparent in the first few years of life, necessitating repeat ophthalmologic evaluation in older children. Early recognition of the cardinal features of this condition will facilitate diagnosis of this complex neurologic disorder.


Assuntos
Adenosina Trifosfatases/genética , Disfunção Cognitiva/genética , Hipotonia Muscular/genética , Mutação/genética , Atrofia Óptica/genética , Proteínas de Transferência de Fosfolipídeos/genética , Encéfalo/patologia , Disfunção Cognitiva/etiologia , Humanos , Imageamento por Ressonância Magnética , Hipotonia Muscular/etiologia , Atrofia Óptica/etiologia , Sequenciamento do Exoma
7.
Dev Med Child Neurol ; 59(7): 680-689, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28318010

RESUMO

Ataxia-telangiectasia is a rare, neurodegenerative, and multisystem disease, characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, progressive respiratory failure, and an increased risk of malignancies. It demands specialized care tailored to the individual patient's needs. Besides the classic ataxia-telangiectasia phenotype, a variant phenotype exists with partly overlapping but some distinctive disease characteristics. This guideline summarizes frequently encountered medical problems in the disease course of patients with classic and variant ataxia-telangiectasia, in the domains of neurology, immunology and infectious diseases, pulmonology, anaesthetic and perioperative risk, oncology, endocrinology, and nutrition. Furthermore, it provides a practical guide with evidence- and expert-based recommendations for the follow-up and treatment of all these different clinical topics.


Assuntos
Ataxia Telangiectasia/terapia , Ataxia Telangiectasia/diagnóstico , Humanos
8.
Clin Immunol ; 178: 45-55, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28126470

RESUMO

Ataxia-telangiectasia (AT) is a neurodegenerative disorder characterized by ataxia, telangiectasia, and immunodeficiency. An increased risk of malignancies and respiratory diseases dramatically reduce life expectancy. To better counsel families, develop individual follow-up programs, and select patients for therapeutic trials, more knowledge is needed on factors influencing survival. This retrospective cohort study of 61 AT patients shows that classical AT patients had a shorter survival than variant patients (HR 5.9, 95%CI 2.0-17.7), especially once a malignancy was diagnosed (HR 2.5, 95%CI 1.1-5.5, compared to classical AT patients without malignancy). Patients with the hyper IgM phenotype with hypogammaglobulinemia (AT-HIGM) and patients with an IgG2 deficiency showed decreased survival compared to patients with normal IgG (HR 9.2, 95%CI 3.2-26.5) and patients with normal IgG2 levels (HR 7.8, 95%CI 1.7-36.2), respectively. If high risk treatment trials will become available for AT, those patients with factors indicating the poorest prognosis might be considered for inclusion first.


Assuntos
Agamaglobulinemia/imunologia , Ataxia Telangiectasia/imunologia , Síndrome de Imunodeficiência com Hiper-IgM/imunologia , Imunoglobulina G/imunologia , Adolescente , Adulto , Agamaglobulinemia/complicações , Ataxia Telangiectasia/complicações , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/mortalidade , Proteínas Mutadas de Ataxia Telangiectasia/genética , Causas de Morte , Criança , Estudos de Coortes , Feminino , Humanos , Síndrome de Imunodeficiência com Hiper-IgM/complicações , Deficiência de IgA/complicações , Deficiência de IgA/imunologia , Síndromes de Imunodeficiência/complicações , Síndromes de Imunodeficiência/imunologia , Expectativa de Vida , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias/etiologia , Neoplasias/genética , Razão de Chances , Fenótipo , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Taxa de Sobrevida , Adulto Jovem
9.
Ned Tijdschr Geneeskd ; 159: A8313, 2015.
Artigo em Holandês | MEDLINE | ID: mdl-25761292

RESUMO

A neonate was born with a sacrococcygeal mass. Initially, spina bifida was suspected. However, neurological examination was unremarkable. An MRI of the neuraxis showed a large cystic presacral lesion without signs of spina bifida. Surgical resection of the lesion was performed. Pathologic evaluation confirmed the diagnosis of a sacrococcygeal teratoma.


Assuntos
Região Sacrococcígea/patologia , Teratoma/congênito , Teratoma/diagnóstico , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Exame Neurológico , Disrafismo Espinal , Teratoma/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA