Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Telemed J E Health ; 29(12): 1834-1842, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37126940

RESUMO

Objective: Low- and middle-income countries (LMICs) face many challenges compared to industrialized nations, most notably in regard to the health care system. Patients often have to travel long distances to receive medical care with few reliable transportation mechanisms. In time-critical emergencies, this is a significant disadvantage. One specialty that is particularly affected by this is spine surgery. Within this field, traumatic injuries and acutely compressive pathologies are often time-critical. Increasing global networking capabilities through internet access offers the possibility for telemedical support in remote regions. Recently, high-performance cameras and processors became available in commercially available smartphones. Due to their wide availability and ease of use, this could provide a unique opportunity to offer telemedical support in LMICs. Methods: We conducted a feasibility study with a neurosurgical institution in east Africa. To ensure telemedical support, a commercially available smartphone was selected as the experimental hardware. Preoperatively, resolution, contrast, brightness, and color reproduction were assessed under theoretical conditions using a test chart. Intraoperatively, the image quality was assessed under different conditions. In the first step, the instrumentation table was displayed, and the mentor surgeon marked an instrument that the mentee surgeon should recognize correctly. In the next evaluation step, the surgical field was shown on film and the mentor surgeon marked an anatomical structure, and in the last evaluation step, the screen of the X-ray machine was captured, and the mentor surgeon again marked an anatomical structure. Subjective image quality was rated by two independent reviewers using the similar modified Likert scale as before on a scale of 1-5, with 1 indicating inadequate quality and 5 indicating excellent quality. Results: The image quality during the video calls was rated as sufficient overall. When evaluating the test charts, a quality of 97% ± 5 on average was found for the chart with the white background and a quality of 84% ± 5 on average for the chart with the black background. The color reproduction, the contrast, and the reproduction of brightness were rated excellent. Intraoperatively, the visualization of the instrument table was also rated excellent. Visualization of the operative site was rated 1.5 ± 0.5 on average and it was not possible to recognize relevant anatomical structures with the required confidence for surgical procedures. Image quality of the X-ray screen was rated 1.5 ± 0.9 on average. Conclusion: Current generation smartphones have high imaging performance, high computing power, and excellent connectivity. However, relevant anatomical structures during spine surgery procedures and on the X-ray screen in the operating room could not be identified with reliability to provide adequate surgical support. Nevertheless, our study showed the potential in smartphones supporting surgical procedures in LMICs, which could be helpful in other surgical fields.


Assuntos
Cirurgiões , Telemedicina , Humanos , Smartphone , Países em Desenvolvimento , Reprodutibilidade dos Testes
2.
PLoS One ; 17(8): e0271690, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35921360

RESUMO

CONTEXT: Prolactin, a hormone synthesized by the anterior pituitary gland demonstrates promise as a neuroprotective agent, however, its role in humans and in vivo during injury is not fully understood. OBJECTIVE: To investigate whether elevated levels of prolactin attenuate injury to the retinal nerve fiber layer (RNFL) following compression of the optic chiasm in patients with a prolactin secreting pituitary macroadenoma (i.e., prolactinoma). DESIGN SETTING AND PARTICIPANTS: A retrospective cross-sectional study of all pituitary macroadenoma patients treated at a single institution between 2009 and 2019. MAIN OUTCOME MEASURE(S): Primary outcome measures included RNFL thickness, mean deviation, and prolactin levels for both prolactin-secreting and non-secreting pituitary macroadenoma patients. RESULTS: Sixty-six patients met inclusion criteria for this study (14 prolactin-secreting and 52 non-secreting macroadenoma patients). Of 52 non-secreting macroadenoma patients, 12 had moderate elevation of prolactin secondary to stalk effect. Patients with moderate elevation in prolactin demonstrated increased RNFL thickness compared to patients with normal prolactin levels (p < 0.01). Additionally, a significant positive relation between increasing levels of prolactin and RNFL thickness was identified in patients with moderate prolactin elevation (R = 0.51, p-value = 0.035). No significant difference was identified between prolactinoma patients and those with normal prolactin levels. CONCLUSIONS: Moderately increased serum prolactin is associated with increased RNFL thickness when compared to controls. These associations are lost when serum prolactin is < 30 ng/ml or elevated in prolactinomas. This suggests a neuroprotective effect of prolactin at moderately increased levels in preserving retinal function during optic chiasm compression.


Assuntos
Adenoma , Fármacos Neuroprotetores , Neoplasias Hipofisárias , Prolactinoma , Adenoma/complicações , Estudos Transversais , Humanos , Fármacos Neuroprotetores/uso terapêutico , Prolactina , Prolactinoma/complicações , Estudos Retrospectivos
3.
Front Med (Lausanne) ; 8: 680602, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307410

RESUMO

Background: The goal of this study was to relate diffusion MR measures of white matter integrity of the retinofugal visual pathway with prolactin levels in a patient with downward herniation of the optic chiasm secondary to medical treatment of a prolactinoma. Methods: A 36-year-old woman with a prolactinoma presented with progressive bilateral visual field defects 9 years after initial diagnosis and medical treatment. She was diagnosed with empty-sella syndrome and instructed to stop cabergoline. Hormone testing was conducted in tandem with routine clinical evaluations over 1 year and the patient was followed with diffusion magnetic resonance imaging (dMRI), optical coherence tomography (OCT), and automated perimetry at three time points. Five healthy controls underwent a complementary battery of clinical and neuroimaging tests at a single time point. Results: Shortly after discontinuing cabergoline, diffusion metrics in the optic tracts were within the range of values observed in healthy controls. However, following a brief period where the patient resumed cabergoline (of her own volition), there was a decrease in serum prolactin with a corresponding decrease in visual ability and increase in radial diffusivity (p < 0.001). Those measures again returned to their baseline ranges after discontinuing cabergoline a second time. Conclusions: These results demonstrate the sensitivity of dMRI to detect rapid and functionally significant microstructural changes in white matter tracts secondary to alterations in serum prolactin levels. The inverse relations between prolactin and measures of white matter integrity and visual function are consistent with the hypothesis that prolactin can play a neuroprotective role in the injured nervous system.

4.
J Vis Exp ; (150)2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31449264

RESUMO

The Translational Brain Mapping Program at the University of Rochester is an interdisciplinary effort that integrates cognitive science, neurophysiology, neuroanesthesia, and neurosurgery. Patients who have tumors or epileptogenic tissue in eloquent brain areas are studied preoperatively with functional and structural MRI, and intraoperatively with direct electrical stimulation mapping. Post-operative neural and cognitive outcome measures fuel basic science studies about the factors that mediate good versus poor outcome after surgery, and how brain mapping can be further optimized to ensure the best outcome for future patients. In this article, we describe the interdisciplinary workflow that allows our team to meet the synergistic goals of optimizing patient outcome and advancing scientific understanding of the human brain.


Assuntos
Centros Médicos Acadêmicos/métodos , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Monitorização Neurofisiológica Intraoperatória/métodos , Medicina de Precisão/métodos , Pesquisa Translacional Biomédica/métodos , Encéfalo/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Procedimentos Neurocirúrgicos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA