Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38224619

RESUMO

Objective.Intensity modulated proton therapy (IMPT) is an emerging treatment modality for cancer. However, treatment planning for IMPT is labour-intensive and time-consuming. We have developed a novel approach for multi-criteria optimisation (MCO) of robust IMPT plans (SISS-MCO) that is fully automated and fast, and we compare it for head and neck, cervix, and prostate tumours to a previously published method for automated robust MCO (IPBR-MCO, van de Water 2013).Approach.In both auto-planning approaches, the applied automated MCO of spot weights was performed with wish-list driven prioritised optimisation (Breedveld 2012). In SISS-MCO, spot weight MCO was applied once for every patient after sparsity-induced spot selection (SISS) for pre-selection of the most relevant spots from a large input set of candidate spots. IPBR-MCO had several iterations of spot re-sampling, each followed by MCO of the weights of the current spots.Main results.Compared to the published IPBR-MCO, the novel SISS-MCO resulted in similar or slightly superior plan quality. Optimisation times were reduced by a factor of 6 i.e. from 287 to 47 min. Numbers of spots and energy layers in the final plans were similar.Significance.The novel SISS-MCO automatically generated high-quality robust IMPT plans. Compared to a published algorithm for automated robust IMPT planning, optimisation times were reduced on average by a factor of 6. Moreover, SISS-MCO is a large scale approach; this enables optimisation of more complex wish-lists, and novel research opportunities in proton therapy.


Assuntos
Cefalosporinas , Neoplasias de Cabeça e Pescoço , Terapia com Prótons , Radioterapia de Intensidade Modulada , Masculino , Feminino , Humanos , Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Terapia com Prótons/métodos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica
2.
Acta Oncol ; 60(2): 222-228, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33269958

RESUMO

PURPOSE: To investigate the dosimetric impact of breathing motion on robustly optimized proton therapy treatment plans for left-sided breast cancer patients with an indication for locoregional irradiation. MATERIALS AND METHODS: Clinical Target Volumes (CTVs) (left-sided breast, level 1 to 4 axillary lymph nodes, interpectoral and internal mammary lymph node regions) and organs at risk were delineated on 4 D-CTs of ten female patients. After treatment planning to a prescribed dose of 40.05 Gy(RBE) in 15 fractions on the time-averaged CT, the dose was calculated on all ten phases of the breathing cycle. Robustness to setup (5 mm) and range errors (3%) was evaluated for those ten phases. Correlations were evaluated between the phases of the breathing cycle and the D98% of the CTV and the Dmean of the heart. RESULTS: Correlations coefficients were between -0.12 and 0.29. At the most extreme values of the 28 robustness scenarios, the clinical goals were met for all but two patients. The mean heart dose was 0.41 Gy(RBE) with a standard deviation of 0.31 Gy(RBE) of proton therapy plans. CONCLUSION: The effect of breathing motion on the robustness of proton therapy treatment plans for this patient group is minor and not of clinical significance. Based on this patient group, a deep-inspiration breath hold seems to be unnecessary to improve robustness for these patients.


Assuntos
Neoplasias da Mama , Terapia com Prótons , Neoplasias Unilaterais da Mama , Neoplasias da Mama/radioterapia , Suspensão da Respiração , Feminino , Coração , Humanos , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Respiração , Neoplasias Unilaterais da Mama/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA