Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065957

RESUMO

The presented research concerns the triple activity of trans-cinnamic (tCA), ferulic (FA) and syringic acids (SA). They act as thyroid peroxidase (TPO) activators, lipoxygenase (LOX) inhibitors and show antiradical activity. All compounds showed a dose-dependent TPO activatory effect, thus the AC50 value (the concentration resulting in 50% activation) was determined. The tested compounds can be ranked as follows: tCA > FA > SA with AC50 = 0.10, 0.39, 0.69 mM, respectively. Strong synergism was found between FA and SA. The activatory effects of all tested compounds may result from interaction with the TPO allosteric site. It was proposed that conformational change resulting from activator binding to TPO allosteric pocket results from the flexibility of a nearby loop formed by residues Val352-Tyr363. All compounds act as uncompetitive LOX inhibitors. The most effective were tCA and SA, whereas the weakest was FA (IC50 = 0.009 mM and IC50 0.027 mM, respectively). In all cases, an interaction between the inhibitors carboxylic groups and side-chain atoms of Arg102 and Arg139 in an allosteric pocket of LOX was suggested. FA/tCA and FA/SA acted synergistically, whereas tCA/SA demonstrated antagonism. The highest antiradical activity was found in the case of SA (IC50 = 0.22 mM). FA/tCA and tCA/SA acted synergistically, whereas antagonism was found for the SA/FA mixture.


Assuntos
Autoantígenos/metabolismo , Ativadores de Enzimas/farmacologia , Iodeto Peroxidase/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Inibidores de Lipoxigenase/farmacologia , Compostos Fitoquímicos/farmacologia , Proteína-Lisina 6-Oxidase/metabolismo , Autoantígenos/química , Cinamatos/química , Cinamatos/farmacologia , Ácidos Cumáricos/química , Ácidos Cumáricos/farmacologia , Relação Dose-Resposta a Droga , Ativadores de Enzimas/química , Ácido Gálico/análogos & derivados , Ácido Gálico/química , Ácido Gálico/farmacologia , Humanos , Concentração Inibidora 50 , Iodeto Peroxidase/química , Proteínas de Ligação ao Ferro/química , Inibidores de Lipoxigenase/química , Modelos Moleculares , Compostos Fitoquímicos/química , Proteína-Lisina 6-Oxidase/química , Relação Estrutura-Atividade
2.
Biomolecules ; 9(11)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671724

RESUMO

This study focused on the effect of kaempferol, catechin, apigenin, sinapinic acid, and extracts from plants (i.e., parsley, cumin, mustard, green tea, and green coffee) on thyroid peroxidase (TPO) and lipoxygenase (LOX) activity, antiradical potential, as well as the result of interactions among them. Catechin, sinapinic acid, and kaempferol acted as a competitive TPO inhibitors, while apigenin demonstrated an uncompetitive mode of inhibitory action. Ethanol extracts from all plants acted as competitive TPO inhibitors, while, after in vitro digestion, TPO activation was found especially in the case of mustard (24%) and cumin (19.85%). Most importantly, TPO activators acted synergistically. The TPO effectors acted as LOX inhibitors. The most effective were potentially bioaccessible compounds from green tea and green coffee (IC50 = 29.73 mg DW/mL and 30.43 mg DW/mL, respectively). The highest free radical scavenging ability was determined for catechin and sinapinic acid (IC50 = 78.37 µg/mL and 84.33 µg/mL, respectively) and potentially bioaccessible compounds from mustard (0.42 mg DW/mL) and green coffee (0.87 mg DW/mL). Green coffee, green tea, cumin, and mustard contain potentially bioaccessible TPO activators that also act as effective LOX inhibitors, which indicate their potentially health-promoting effects for people suffering from Hashimoto's disease.


Assuntos
Iodeto Peroxidase/antagonistas & inibidores , Iodeto Peroxidase/metabolismo , Inibidores de Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Lipoxigenase/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ligação Proteica
3.
Molecules ; 24(15)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366075

RESUMO

The aim of this study was to estimate the mode of thyroid peroxidase (TPO) inhibition by polyphenols: Chlorogenic acid, rosmarinic acid, quercetin, and rutin. All the tested polyphenols inhibited TPO; the IC50 values ranged from 0.004 mM to 1.44 mM (for rosmarinic acid and rutin, respectively). All these pure phytochemical substances exhibited different modes of TPO inhibition. Rutin and rosmarinic acid showed competitive, quercetin-uncompetitive and chlorogenic acid-noncompetitive inhibition effect on TPO. Homology modeling was used to gain insight into the 3D structure of TPO and molecular docking was applied to study the interactions of the inhibitors with their target at the molecular level. Moreover, the type and strength of mutual interactions between the inhibitors (expressed as the combination index, CI) were analyzed. Slight synergism, antagonism, and moderate antagonism were found in the case of the combined addition of the pure polyphenols. Rutin and quercetin as well as rutin and rosmarinic acid acted additively (CI = 0.096 and 1.06, respectively), while rutin and chlorogenic acid demonstrated slight synergism (CI = 0.88) and rosmarinic acid with quercetin and rosmarinic acid with chlorogenic acid showed moderate antagonism (CI = 1.45 and 1.25, respectively). The mixture of chlorogenic acid and quercetin demonstrated antagonism (CI = 1.79). All the polyphenols showed in vitro antiradical ability against 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), ABTS. The highest ability (expressed as IC50) was exhibited by rosmarinic acid (0.12 mM) and the lowest value was ascribed to quercetin (0.45 mM).


Assuntos
Ácido Clorogênico/química , Cinamatos/química , Depsídeos/química , Iodeto Peroxidase/química , Iodetos/química , Quercetina/química , Rutina/química , Motivos de Aminoácidos , Animais , Antioxidantes/química , Benzotiazóis/antagonistas & inibidores , Domínio Catalítico , Inibidores Enzimáticos/química , Expressão Gênica , Iodeto Peroxidase/antagonistas & inibidores , Iodeto Peroxidase/isolamento & purificação , Iodeto Peroxidase/metabolismo , Iodetos/metabolismo , Cinética , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Ácidos Sulfônicos/antagonistas & inibidores , Suínos , Termodinâmica , Glândula Tireoide/química , Glândula Tireoide/enzimologia , Ácido Rosmarínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA