Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 621: 39-45, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35810589

RESUMO

Plasma membrane (PM) H+-ATPase contributes to nutrient uptake and stomatal opening by creating proton gradient across the membrane. Previous studies report that a dominant mutation in the OPEN STOMATA2 locus (OST2-2D) constitutively activates Arabidopsis PM H+-ATPase 1 (AHA1), which enlarges proton motive force for root nutrient uptake. However, the stomatal opening is also constitutively enhanced in the ost2-2D, causing drought hypersensitivity. To develop plants with improved nutrient acquisition and normal stomatal movement, we generated grafted plants (scion/rootstock: Col-0 (WT)/ost2-2D), and compared their growth, nutrient element content, and transcriptomes with those of control plants (WT/WT) under nutrient-rich or nutrient-poor conditions. WT/ost2-2D shoots had larger weights, rosette diameter, leaf blade area, and content of C, N, K, Ca, S, P, Mg, Na, Mn, B, Co, and Mo under nutrient-poor conditions compared with WT/WT shoots. The root weights and primary root length were greater in WT/ost2-2D plants than in WT/WT plants under both nutrient conditions. Root expression of the high-affinity nitrate transporter NRT2.1, potassium transporter HAK5, and divalent cation transporter IRT1 was higher in WT/ost2-2D plants than in WT/WT plants under nutrient-poor conditions. These results suggest that root-specific activation of PM H+-ATPase enhances plant growth by increasing root uptake of nutrient elements under nutrient-poor conditions. Our study presents a novel approach to improving nutrient uptake efficiency in crops for low-input sustainable agriculture.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Nutrientes , Raízes de Plantas/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo
2.
Plant Cell Physiol ; 63(6): 842-854, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35445268

RESUMO

Nutrient distribution within the soil is generally heterogeneous. Plants, therefore, have evolved sophisticated systemic processes enabling them to optimize their nutrient acquisition efficiency. By organ-to-organ communication in Arabidopsis thaliana, for instance, iron (Fe) starvation in one part of a root drives the upregulation of a high-affinity Fe-uptake system in other root regions surrounded by sufficient levels of Fe. This compensatory response through Fe-starvation-triggered organ-to-organ communication includes the upregulation of Iron-regulated transporter 1 (IRT1) gene expression on the Fe-sufficient side of the root; however, the molecular basis underlying this long-distance signaling remains unclear. Here, we analyzed gene expression by RNA-seq analysis of Fe-starved split-root cultures. Genome-wide expression analysis showed that localized Fe depletion in roots upregulated several genes involved in Fe uptake and signaling, such as IRT1, in a distant part of the root exposed to Fe-sufficient conditions. This result indicates that long-distance signaling for Fe demand alters the expression of a subset of genes responsible for Fe uptake and coumarin biosynthesis to maintain a level of Fe acquisition sufficient for the entire plant. Loss of IRON MAN/FE-UPTAKE-INDUCING PEPTIDE (IMA/FEP) leads to the disruption of compensatory upregulation of IRT1 in the root surrounded by sufficient Fe. In addition, our split-root culture-based analysis provides evidence that the IMA3/FEP1-MYB10/72 pathway mediates long-distance signaling in Fe homeostasis through the regulation of coumarin biosynthesis. These data suggest that the signaling of IMA/FEP, a ubiquitous family of metal-binding peptides, is critical for organ-to-organ communication in response to Fe starvation under heterogeneous Fe conditions in the surrounding environment.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ferro/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cumarínicos/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
3.
Plant Cell Environ ; 33(11): 1888-97, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20545883

RESUMO

Oxygen uptake rates are increased when concentrated ammonium instead of nitrate is used as sole N source. Several explanations for this increased respiration have been suggested, but the underlying mechanisms are still unclear. To investigate possible factors responsible for this respiratory increase, we measured the O2 uptake rate, activity and transcript level of respiratory components, and concentration of adenylates using Arabidopsis thaliana shoots grown in media containing various N sources. The O2 uptake rate was correlated with concentrations of ammonium and ATP in shoots, but not related to the ammonium assimilation. The capacity of the ATP-coupling cytochrome pathway (CP) and its related genes were up-regulated when concentrated ammonium was sole N source, whereas the ATP-uncoupling alternative oxidase did not influence the extent of the respiratory increase. Our results suggest that the ammonium-dependent increase of the O2 uptake rate can be explained by the up-regulation of the CP, which may be related to the ATP consumption by the plasma-membrane H+ -ATPase.


Assuntos
Arabidopsis/metabolismo , Grupo dos Citocromos c/metabolismo , Consumo de Oxigênio , Compostos de Amônio Quaternário/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Respiração Celular , Grupo dos Citocromos c/genética , Regulação da Expressão Gênica de Plantas , Proteínas Mitocondriais , Mutação , Nitratos/metabolismo , Nitrogênio/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA