Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 65(5): 24, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748430

RESUMO

Purpose: Hydrogels derived from decellularized tissues are promising biomaterials in tissue engineering, but their rapid biodegradation can hinder in vitro cultivation. This study aimed to retard biodegradation of a hydrogel derived from porcine decellularized lacrimal glands (dLG-HG) by crosslinking with genipin to increase the mechanical stability without affecting the function and viability of lacrimal gland (LG)-associated cells. Methods: The effect of different genipin concentrations on dLG-HG stiffness was measured rheologically. Cell-dependent biodegradation was quantified over 10 days, and the impact on matrix metalloproteinase (MMP) activity was quantified by gelatin and collagen zymography. The viability of LG epithelial cells (EpCs), mesenchymal stem cells (MSCs), and endothelial cells (ECs) cultured on genipin-crosslinked dLG-HG was assessed after 10 days, and EpC secretory activity was analyzed by ß-hexosaminidase assay. Results: The 0.5-mM genipin increased the stiffness of dLG-HG by about 46%, and concentrations > 0.25 mM caused delayed cell-dependent biodegradation and reduced MMP activity. The viability of EpCs, MSCs, and ECs was not affected by genipin concentrations of up to 0.5 mM after 10 days. Moreover, up to 0.5-mM genipin did not negatively affect EpC secretory activity compared to control groups. Conclusions: A concentration of 0.5-mM genipin increased dLG-HG stiffness, and 0.25-mM genipin was sufficient to prevent MMP-dependent degradation. Importantly, concentrations of up to 0.5-mM genipin did not compromise the viability of LG-associated cells or the secretory activity of EpCs. Thus, crosslinking with genipin improves the properties of dLG-HG for use as a substrate in LG tissue engineering.


Assuntos
Sobrevivência Celular , Reagentes de Ligações Cruzadas , Hidrogéis , Iridoides , Engenharia Tecidual , Animais , Iridoides/farmacologia , Iridoides/metabolismo , Suínos , Engenharia Tecidual/métodos , Reagentes de Ligações Cruzadas/farmacologia , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Materiais Biocompatíveis
2.
Biofabrication ; 16(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241707

RESUMO

Sustainable treatment of aqueous deficient dry eye (ADDE) represents an unmet medical need and therefore requires new curative and regenerative approaches based on appropriatein vitromodels. Tissue specific hydrogels retain the individual biochemical composition of the extracellular matrix and thus promote the inherent cell´s physiological function. Hence, we created a decellularized lacrimal gland (LG) hydrogel (dLG-HG) meeting the requirements for a bioink as the basis of a LG model with potential forin vitroADDE studies. Varying hydrolysis durations were compared to obtain dLG-HG with best possible physical and ultrastructural properties while preserving the original biochemical composition. A particular focus was placed on dLG-HG´s impact on viability and functionality of LG associated cell types with relevance for a futurein vitromodel in comparison to the unspecific single component hydrogel collagen type-I (Col) and the common cell culture substrate Matrigel. Proliferation of LG epithelial cells (EpC), LG mesenchymal stem cells, and endothelial cells cultured on dLG-HG was enhanced compared to culture on Matrigel. Most importantly with respect to a functionalin vitromodel, the secretion capacity of EpC cultured on dLG-HG was higher than that of EpC cultured on Col or Matrigel. In addition to these promising cell related properties, a rapid matrix metalloproteinase-dependent biodegradation was observed, which on the one hand suggests a lively cell-matrix interaction, but on the other hand limits the cultivation period. Concluding, dLG-HG possesses decisive properties for the tissue engineering of a LGin vitromodel such as cytocompatibility and promotion of secretion, making it superior to unspecific cell culture substrates. However, deceleration of biodegradation should be addressed in future experiments.


Assuntos
Aparelho Lacrimal , Células-Tronco Mesenquimais , Aparelho Lacrimal/metabolismo , Aparelho Lacrimal/ultraestrutura , Hidrogéis/química , Células Endoteliais , Engenharia Tecidual/métodos , Matriz Extracelular/metabolismo
3.
Analyst ; 148(23): 6109-6119, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37927114

RESUMO

Label-free identification of tumor cells using spectroscopic assays has emerged as a technological innovation with a proven ability for rapid implementation in clinical care. Machine learning facilitates the optimization of processing and interpretation of extensive data, such as various spectroscopy data obtained from surgical samples. The here-described preclinical work investigates the potential of machine learning algorithms combining confocal Raman spectroscopy to distinguish non-differentiated glioblastoma cells and their respective isogenic differentiated phenotype by means of confocal ultra-rapid measurements. For this purpose, we measured and correlated modalities of 1146 intracellular single-point measurements and sustainingly clustered cell components to predict tumor stem cell existence. By further narrowing a few selected peaks, we found indicative evidence that using our computational imaging technology is a powerful approach to detect tumor stem cells in vitro with an accuracy of 91.7% in distinct cell compartments, mainly because of greater lipid content and putative different protein structures. We also demonstrate that the presented technology can overcome intra- and intertumoral cellular heterogeneity of our disease models, verifying the elevated physiological relevance of our applied disease modeling technology despite intracellular noise limitations for future translational evaluation.


Assuntos
Glioblastoma , Análise Espectral Raman , Humanos , Diferenciação Celular , Algoritmos , Aprendizado de Máquina
4.
Nanomaterials (Basel) ; 13(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513105

RESUMO

This study describes the synthesis, radiofluorination and purification of an anionic amphiphilic teroligomer developed as a stabilizer for siRNA-loaded calcium phosphate nanoparticles (CaP-NPs). As the stabilizing amphiphile accumulates on nanoparticle surfaces, the fluorine-18-labeled polymer should enable to track the distribution of the CaP-NPs in brain tumors by positron emission tomography after application by convection-enhanced delivery. At first, an unmodified teroligomer was synthesized with a number average molecular weight of 4550 ± 20 Da by free radical polymerization of a defined composition of methoxy-PEG-monomethacrylate, tetradecyl acrylate and maleic anhydride. Subsequent derivatization of anhydrides with azido-TEG-amine provided an azido-functionalized polymer precursor (o14PEGMA-N3) for radiofluorination. The 18F-labeling was accomplished through the copper-catalyzed cycloaddition of o14PEGMA-N3 with diethylene glycol-alkyne-substituted heteroaromatic prosthetic group [18F]2, which was synthesized with a radiochemical yield (RCY) of about 38% within 60 min using a radiosynthesis module. The 18F-labeled polymer [18F]fluoro-o14PEGMA was obtained after a short reaction time of 2-3 min by using CuSO4/sodium ascorbate at 90 °C. Purification was performed by solid-phase extraction on an anion-exchange cartridge followed by size-exclusion chromatography to obtain [18F]fluoro-o14PEGMA with a high radiochemical purity and an RCY of about 15%.

5.
Pharmaceutics ; 14(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35214058

RESUMO

Convection-enhanced delivery (CED) has been introduced as a concept in cancer treatment to generate high local concentrations of anticancer therapeutics and overcome the limited diffusional distribution, e.g., in the brain. RNA interference provides interesting therapeutic options to fight cancer cells but requires nanoparticulate (NP) carriers with a size below 100 nm as well as a low zeta potential for CED application. In this study, we investigated calcium phosphate NPs (CaP-NPs) as siRNA carriers for CED application. Since CaP-NPs tend to aggregate, we introduced a new terpolymer (o14PEGMA(1:1:2.5) NH3) for stabilization of CaP-NPs intended for delivery of siRNA to brain cancer cells. This small terpolymer provides PEG chains for steric stabilization, and a fat alcohol to improve interfacial activity, as well as maleic anhydrides that allow for both labeling and high affinity to Ca(II) in the hydrolyzed state. In a systematic approach, we varied the Ca/P ratio as well as the terpolymer concentration and successfully stabilized NPs with the desired properties. Labeling of the terpolymer with the fluorescent dye Cy5 revealed the terpolymer's high affinity to CaP. Importantly, we also determined a high efficiency of siRNA binding to the NPs that caused very effective survivin siRNA silencing in F98 rat brain cancer cells. Cytotoxicity investigations with a standard cell line resulted in minor and transient effects; no adverse effects were observed in organotypic brain slice cultures. However, more specific cytotoxicity investigations are required. This study provides a systematic and mechanistic analysis characterizing the effects of the first oligomer of a new class of stabilizers for siRNA-loaded CaP-NPs.

6.
Int J Mol Sci ; 22(23)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34884623

RESUMO

The present study analyzes the capacity of collagen (coll)/sulfated glycosaminoglycan (sGAG)-based surface coatings containing bioactive glass nanoparticles (BGN) in promoting the osteogenic differentiation of human mesenchymal stroma cells (hMSC). Physicochemical characteristics of these coatings and their effects on proliferation and osteogenic differentiation of hMSC were investigated. BGN were stably incorporated into the artificial extracellular matrices (aECM). Oscillatory rheology showed predominantly elastic, gel-like properties of the coatings. The complex viscosity increased depending on the GAG component and was further elevated by adding BGN. BGN-containing aECM showed a release of silicon ions as well as an uptake of calcium ions. hMSC were able to proliferate on coll and coll/sGAG coatings, while cellular growth was delayed on aECM containing BGN. However, a stimulating effect of BGN on ALP activity and calcium deposition was shown. Furthermore, a synergistic effect of sGAG and BGN was found for some donors. Our findings demonstrated the promising potential of aECM and BGN combinations in promoting bone regeneration. Still, future work is required to further optimize the BGN/aECM combination for increasing its combined osteogenic effect.


Assuntos
Diferenciação Celular , Matriz Extracelular/química , Vidro/química , Células-Tronco Mesenquimais/citologia , Nanopartículas/administração & dosagem , Osteogênese , Proliferação de Células , Células Cultivadas , Colágeno/química , Glicosaminoglicanos/química , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas/química
7.
Biomater Res ; 23: 26, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31890268

RESUMO

BACKGROUND: Delayed bone regeneration of fractures in osteoporosis patients or of critical-size bone defects after tumor resection are a major medical and socio-economic challenge. Therefore, the development of more effective and osteoinductive biomaterials is crucial. METHODS: We examined the osteogenic potential of macroporous scaffolds with varying pore sizes after biofunctionalization with a collagen/high-sulfated hyaluronan (sHA3) coating in vitro. The three-dimensional scaffolds were made up from a biodegradable three-armed lactic acid-based macromer (TriLA) by cross-polymerization. Templating with solid lipid particles that melt during fabrication generates a continuous pore network. Human mesenchymal stem cells (hMSC) cultivated on the functionalized scaffolds in vitro were investigated for cell viability, production of alkaline phosphatase (ALP) and bone matrix formation. Statistical analysis was performed using student's t-test or two-way ANOVA. RESULTS: We succeeded in generating scaffolds that feature a significantly higher average pore size and a broader distribution of individual pore sizes (HiPo) by modifying composition and relative amount of lipid particles, macromer concentration and temperature for cross-polymerization during scaffold fabrication. Overall porosity was retained, while the scaffolds showed a 25% decrease in compressive modulus compared to the initial TriLA scaffolds with a lower pore size (LoPo). These HiPo scaffolds were more readily coated as shown by higher amounts of immobilized collagen (+ 44%) and sHA3 (+ 25%) compared to LoPo scaffolds. In vitro, culture of hMSCs on collagen and/or sHA3-coated HiPo scaffolds demonstrated unaltered cell viability. Furthermore, the production of ALP, an early marker of osteogenesis (+ 3-fold), and formation of new bone matrix (+ 2.5-fold) was enhanced by the functionalization with sHA3 of both scaffold types. Nevertheless, effects were more pronounced on HiPo scaffolds about 112%. CONCLUSION: In summary, we showed that the improvement of scaffold pore sizes enhanced the coating efficiency with collagen and sHA3, which had a significant positive effect on bone formation markers, underlining the promise of using this material approach for in vivo studies.

8.
Int J Mol Sci ; 18(5)2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28531139

RESUMO

Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR.


Assuntos
Materiais Biocompatíveis/química , Gelatina/química , Regeneração Nervosa/fisiologia , Peptídeos/química , Nervo Isquiático/fisiologia , Tecido Adiposo/citologia , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Humanos , Hidrogéis/química , Isoleucina/análogos & derivados , Isoleucina/química , Anidridos Maleicos/química , Morfolinas/química , Cimento de Policarboxilato/química , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/cirurgia , Resistência ao Cisalhamento , Células-Tronco , Tirosina/química
9.
Cells Tissues Organs ; 201(5): 366-79, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27233518

RESUMO

There are various conceptually different strategies to improve bone regeneration and to treat osteoporosis, each with distinct inherent advantages and disadvantages. The use of RNA interference strategies to suppress the biological action of catabolic factors or antagonists of osteogenic proteins is promising, and such strategies can be applied locally. They are comparably inexpensive and do not suffer from stability problems as protein-based approaches. In this study, we focus on sclerostin, encoded by the SOST gene, a key regulator of bone formation and remodeling. Sclerostin is expressed by mature osteocytes but also by late osteogenically differentiated cells. Thus, it is difficult and requires long-term cultures to investigate the effects of SOST silencing on the expression of osteogenic markers using primary cells. We, therefore, selected a rat osteosarcoma cell line, UMR-106, that has been shown to express SOST and secrete sclerostin in a comparable fashion as late osteoblasts and osteocytes. We investigated the effects of differentiating supplements on SOST expression and sclerostin secretion in UMR-106 cells and found that addition of 100 ng/ml of bone morphogenetic protein (BMP)-2 strongly induced sclerostin secretion, whereas dexamethasone inhibited secretion. Effects of silencing SOST in UMR-106 cells cultured in various differentiation media including BMP-2 and/or dexamethasone were determined next with the aim to find promising test conditions for a readout system for the evaluation of future small interfering RNA release formulations for local induction of bone formation. We found a direct correlation between attenuated SOST expression and an increase in the osteogenic potential of UMR-106 cells. The combination of SOST silencing and BMP-2 could synergistically improve osteogenic factors. A lowered proliferation rate in silenced groups may indicate a faster switch to differentiation.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Técnicas de Silenciamento de Genes , Marcadores Genéticos/genética , Modelos Biológicos , Terapia de Alvo Molecular , Osteogênese , Osteossarcoma/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Calcificação Fisiológica/genética , Cálcio/metabolismo , Contagem de Células , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inativação Gênica , Osteogênese/genética , Osteossarcoma/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
10.
Acta Biomater ; 35: 318-29, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26925964

RESUMO

We present a series of organic/inorganic hybrid sol-gel derived glasses, made from a tetraethoxysilane-derived silica sol (100% SiO2) and oligovalent organic crosslinkers functionalized with 3-isocyanatopropyltriethoxysilane. The material was susceptible to heat sterilization. The hybrids were processed into pore-interconnected scaffolds by an indirect rapid prototyping method, described here for the first time for sol-gel glass materials. A large panel of polyethylene oxide-derived 2- to 4-armed crosslinkers of molecular weights ranging between 170 and 8000Da were incorporated and their effect on scaffold mechanical properties was investigated. By multiple linear regression, 'organic content' and the 'content of ethylene oxide units in the hybrid' were identified as the main factors that determined compressive strength and modulus, respectively. In general, 3- and 4-armed crosslinkers performed better than linear molecules. Compression tests and cell culture experiments with osteoblast-like SaOS-2 cells showed that macroporous scaffolds can be produced with compressive strengths of up to 33±2MPa and with a pore structure that allows cells to grow deep into the scaffolds and form mineral deposits. Compressive moduli between 27±7MPa and 568±98MPa were obtained depending on the hybrid composition and problems associated with the inherent brittleness of sol-gel glass materials could be overcome. SaOS-2 cells showed cytocompatibility on hybrid glass scaffolds and mineral accumulation started as early as day 7. On day 14, we also found mineral accumulation on control hybrid glass scaffolds without cells, indicating a positive effect of the hybrid glass on mineral accumulation. STATEMENT OF SIGNIFICANCE: We produced a hybrid sol-gel glass material with significantly improved mechanical properties towards an application in bone regeneration and processed the material into macroporous scaffolds of controlled architecture by indirect rapid prototyping. We were able to produce macroporous materials of relevant porosity and pore size with compressive moduli, covering the range reported for cancellous bone while an even higher compressive strength was maintained. By multiple linear regression, we identified crosslinker parameters, namely organic content and the content of ethylene oxide units in the hybrids that predominantly determined the mechanics of the hybrid materials. The scaffolds proved to be cytocompatible and induced mineralization in SaOS-2 cells. This provides new insight on the critical parameters for the design of the organic components of covalent hybrid sol-gel glasses.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Vidro/química , Teste de Materiais/métodos , Transição de Fase/efeitos dos fármacos , Alicerces Teciduais/química , Linhagem Celular Tumoral , Força Compressiva/efeitos dos fármacos , Crioultramicrotomia , Módulo de Elasticidade/efeitos dos fármacos , Humanos , Peso Molecular , Poliésteres/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Dióxido de Silício/química
11.
Int J Mol Sci ; 16(11): 27677-706, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26610468

RESUMO

Contemporary biomaterials are expected to provide tailored mechanical, biological and structural cues to encapsulated or invading cells in regenerative applications. In addition, the degradative properties of the material also have to be adjustable to the desired application. Oligo- or polymeric building blocks that can be further cross-linked into hydrogel networks, here addressed as macromers, appear as the prime option to assemble gels with the necessary degrees of freedom in the adjustment of the mentioned key parameters. Recent developments in the design of multi-functional macromers with two or more chemically different types of functionalities are summarized and discussed in this review illustrating recent trends in the development of advanced hydrogel building blocks for regenerative applications.


Assuntos
Materiais Biocompatíveis , Biopolímeros , Hidrogel de Polietilenoglicol-Dimetacrilato , Medicina Regenerativa , Engenharia Tecidual , Animais , Materiais Biocompatíveis/química , Biopolímeros/química , Matriz Extracelular , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Peptídeos , Polissacarídeos
12.
J Orthop Res ; 33(3): 325-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25469667

RESUMO

Medical CoCr is one of the main alloys used for metal-on-metal prosthesis in patients with total hip arthroplasty. CoCr surfaces modified by nitrogen plasma immersion ion implantation (PIII) are characterized by improved wear resistance but also showed increased Co(II) ion release under in vitro conditions. For the first time, CoCr modified by nitrogen PIII was evaluated with regard to its effect on the osteogenic differentiation of MSC. The activity of alkaline phosphatase, the expression of the osteogenic genes Runt-related transcription factor 2, osteopontin as well as integrin-binding bone sialoprotein and the production of osteocalcin and hydroxyapatite were determined. The results of our study demonstrate that Co(II) ions released from the alloy affected the osteogenic differentiation of MSC. Distinct differences in differentiation markers were found between pristine and modified alloys for osteocalcin but not for integrin-binding sialoprotein and hydroxyapatite. Interestingly, osteopontin was upregulated in naive and differentiated MSC by Co(II) ions and modified CoCr, likely through the induction of a cellular hypoxic response. The findings of this study contribute to a better understanding of possible risk factors with regard to a clinical applicability of surface modified CoCr implant materials.


Assuntos
Artroplastia de Quadril , Ligas de Cromo/toxicidade , Cobalto/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteocalcina/biossíntese , Osteopontina/genética
13.
J Biomed Mater Res A ; 102(6): 1744-54, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23775782

RESUMO

Wear particles and ion release from medical CoCr contribute to the risk for aseptic loosening. Nitrogen plasma immersion ion implantation (PIII) has been shown to reduce wear of CoCr but is associated with increased Co ion release. This work investigated the cytocompatibility of CoCr modified by nitrogen PIII at different temperatures (mCoCr). The osteosarcoma cell line Saos-2, mesenchymal stem cells (MSCs), and mononuclear cells (MNCs) were grown directly on CoCr/mCoCr discs or treated with CoCl2. Proliferation and metabolic activity of Saos-2 and MSC were decreased on mCoCr in correlation with increasing implantation temperature. The elevated Co ion release seemed to play a decisive role since analog effects were observed by treatment of cells with CoCl2. Proliferation of phytohemagglutinin-stimulated MNC was reduced in the presence of CoCr discs or CoCl2. For MNC-alloy cultures we observed an increase in interleukin 2 (IL-2) and a decrease in interferon γ (IFN-γ) and IL-10 secretion compared to cultures without alloys. The results of this study demonstrate that PIII process temperature and corresponding Co ion release correlate with material cytocompatibility. Therefore, the two competing parameters, reduction of wear and increase in Co ions, have to be taken into consideration for the evaluation of the clinical applicability of nitrogen-implanted CoCr.


Assuntos
Materiais Biocompatíveis/toxicidade , Ligas de Cromo/toxicidade , Cobalto/toxicidade , Nitrogênio/toxicidade , Adulto , Materiais Biocompatíveis/química , Linhagem Celular , Sobrevivência Celular , Ligas de Cromo/química , Cobalto/química , Citocinas/análise , Dano ao DNA , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Nitrogênio/química , Osteoblastos/citologia , Osteoblastos/metabolismo , Propriedades de Superfície , Adulto Jovem
14.
Acta Biomater ; 7(4): 1460-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21187170

RESUMO

Hydrogels that solidify in response to a dual, physical and chemical, mechanism upon temperature increase were fabricated and characterized. The hydrogels were based on N-isopropylacrylamide, which renders them thermoresponsive, and contained covalently cross-linkable moieties in the macromers. The effects of the macromer end group, acrylate or methacrylate, and the fabrication conditions on the degradative and swelling properties of the hydrogels were investigated. The hydrogels exhibited higher swelling below their lower critical solution temperature (LCST). When immersed in cell culture medium at physiological temperature, which was above their LCST, hydrogels showed constant swelling and no degradation over 8 weeks, with the methacrylated hydrogels showing greater swelling than their acrylated analogs. In addition, hydrogels immersed in cell culture medium under the same conditions showed lower swelling compared with phosphate-buffered saline. The interplay between chemical cross-linking and thermally induced phase separation affected the swelling characteristics of the hydrogels in different media. Mesenchymal stem cells encapsulated in the hydrogels in vitro were viable over 3 weeks and markers of osteogenic differentiation were detected when the cells were cultured with osteogenic supplements. Hydrogel mineralization in the absence of cells was observed in cell culture medium with the addition of fetal bovine serum and ß-glycerol phosphate. The results suggest that these hydrogels may be suitable as carriers for cell delivery in tissue engineering.


Assuntos
Acrilamidas/química , Reagentes de Ligações Cruzadas/química , Hidrogéis/síntese química , Hidrogéis/farmacologia , Teste de Materiais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Temperatura , Acrilamidas/farmacologia , Animais , Soluções Tampão , Cálcio/análise , Bovinos , Sistema Livre de Células/efeitos dos fármacos , Células Cultivadas , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Meios de Cultura/farmacologia , Hidrogéis/química , Masculino , Células-Tronco Mesenquimais/citologia , Microscopia de Fluorescência , Minerais/metabolismo , Osteogênese/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344
15.
Biomacromolecules ; 11(3): 600-9, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20170180

RESUMO

In this work, biodegradable branched polycationic polymers were synthesized by Michael addition polymerization from different amine monomers and the triacrylate monomer trimethylolpropane triacrylate. The polymers varied in the number of amines that dissociate in different pH ranges, which are considered to be beneficial to different parts of the gene delivery process. P-DED, a polymer synthesized from trimethylolpropane triacrylate and dimethylethylenediamine, had the highest number of protonated amines that are available for plasmid DNA (pDNA) complexation at pH 7.4 of all polymers synthesized. P-DED formed a positive polyplex (13.9 +/- 0.5 mV) at a polymer/pDNA weight ratio of 10:1 in contrast with the other polymers synthesized, which formed positive polyplexes only at higher weight ratios. Polyplexes formed with the synthesized polymers at the highest polymer/pDNA weight ratio tested (300:1) resulted in higher transfection with enhanced green fluorescent protein reporter gene (5.3 +/- 1.0 to 30.6 +/- 6.6%) compared with naked pDNA (0.8 +/- 0.4%), as quantified by flow cytometry. Polyplexes formed with P-DED (weight ratio of 300:1) also showed higher transfection (30.6 +/- 6.6%) as compared with polyplexes formed with branched polyethylenimine (weight ratio of 2:1, 25.5 +/- 2.7%). The results from this study demonstrated that polymers with amines that dissociate above pH 7.4, which are available as positively charged groups for pDNA complexation at pH 7.4, can be synthesized to produce stable polyplexes with increased zeta potential and decreased hydrodynamic size that efficiently transfect cells. This work indicated that polymers containing varying amine functionalities with different buffering capabilities can be synthesized by using different amine monomers and used as effective gene delivery vectors.


Assuntos
Aminas/química , Técnicas de Transferência de Genes , Animais , Cromatografia em Gel , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Peso Molecular , Ratos
16.
Biomacromolecules ; 10(9): 2436-45, 2009 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-19678696

RESUMO

Biodegradable branched polycationic polymers with varying hydrophilic spacer lengths were synthesized from different triacrylate monomers and the amine monomer 1-(2-aminoethyl)piperazine by Michael addition polymerization. The hydrophilic spacers were varied by the number of ethyleneoxy groups in the triacrylate monomer (E/M) that ranged from 0 to 14. The polymer degradation depended on the spacer length and pH; the amount of ester degraded as determined by (1)H NMR after 14 days was 43.4 +/- 2.1% (pH 5.0) and 89.7 +/- 1.3% (pH 7.4) for the polymer with 0 E/M compared to 55.7 +/- 2.6% (pH 5.0) and 98.5 +/- 1.6% (pH 7.4) for the polymer with 14 E/M. Cell viability of rat fibroblasts after exposure to polymer solutions of concentrations up to 1000 microg/mL remained high (above 66.9 +/- 12.1% compared to below 7.6 +/- 1.1% for polyethylenimine at a concentration of 50 microg/mL or higher) and increased with the spacer length. The polyplexes made with all the synthesized polymers showed higher transfection efficiency (4.5 +/- 1.7% to 9.4 +/- 2.0%, dependent on the polymer/pDNA weight ratio) with an enhanced green fluorescent protein reporter gene compared to naked pDNA (0.8 +/- 0.4%) as quantified by flow cytometry. This study demonstrates that hydrophilic spacers can be incorporated into polycationic polymers to reduce their cytotoxicity and enhance their degradability for nonviral gene delivery.


Assuntos
Técnicas de Transferência de Genes , Polímeros/síntese química , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/citologia , Poliaminas/síntese química , Poliaminas/química , Poliaminas/farmacologia , Polieletrólitos , Polímeros/química , Polímeros/farmacologia , Ratos , Eletricidade Estática
17.
Biomacromolecules ; 9(3): 818-27, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18247565

RESUMO

We have synthesized a novel gene delivery vector by covalently combining branched polyethylenimine (bPEI) and hyaluronic acid (HA) with the aim of improving transfection of bPEI into human mesenchymal stem cells (hMSCs) while maintaining cell viability. Because of the opposite charges on bPEI and HA, the bPEI-HA vector forms a zwitterionic polymer capable of inter- and intramolecular interactions. We have characterized the hydrodynamic radius of bPEI-HA and bPEI-HA/DNA complexes at ambient and physiological temperatures, as well as at a range of salt concentrations using light scattering, and investigated the effect of the size of transfecting complexes on gene delivery. We found that by increasing the salt concentration from 150 to 1000 mM of NaCl, the mean hydrodynamic radius (R(h)) of bPEI-HA increases from 2.0 +/- 1.1 to 366.0 +/- 149.0 nm. However, increasing the salt concentration decreases the mean R(h) of bPEI-HA/DNA complexes from 595.0 +/- 44.6 to 106.0 +/- 19.2 nm at 25 degrees C and from 767.0 +/- 137.2 to 74.0 +/- 23.0 nm at 37 degrees C. hMSCs transfected with smaller complexes showed a significant increase in transfection from 3.8 +/- 1.5% to 19.1 +/- 4.4%. Similarly, bPEI-HA performed significantly better than bPEI in terms of cell viability (86.0 +/- 6.7% with bPEI-HA versus 7.0 +/- 2.8% with bPEI, 24 h post exposure at the highest concentration of 500 mg/mL) and maximum transfection efficiencies (12.0 +/- 4.2% with bPEI/DNA complexes and 33.6 +/- 13.9% with bPEI-HA/DNA complexes). Thus, modifying bPEI by covalent conjugation with HA improves its performance as a gene delivery vector in hMSCs. This presents a promising approach to altering hMSCs for tissue engineering and other applications.


Assuntos
Vetores Genéticos/química , Ácido Hialurônico/análogos & derivados , Células-Tronco Mesenquimais , Polietilenoimina/análogos & derivados , Transfecção , DNA/química , DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Vetores Genéticos/síntese química , Vetores Genéticos/toxicidade , Humanos , Ácido Hialurônico/síntese química , Ácido Hialurônico/química , Ligantes , Luz , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Polietilenoimina/síntese química , Polietilenoimina/química , Espalhamento de Radiação , Cloreto de Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA