Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Exp Lung Res ; 50(1): 96-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625585

RESUMO

Background: Acute Respiratory Distress syndrome (ARDS) is a clinical syndrome of noncardiac pulmonary edema and inflammation leading to acute respiratory failure. We used the oleic acid infusion pig model of ARDS resembling human disease to explore cytokine changes in white blood cells (WBC) and plasma proteins, comparing baseline to ARDS values. Methods: Nineteen juvenile female swine were included in the study. ARDS defined by a PaO2/FiO2 ratio < 300 was induced by continuous oleic acid infusion. Arterial blood was drawn before and during oleic acid infusion, and when ARDS was established. Cytokine expression in WBC was analyzed by RT-qPCR and plasma protein expression by ELISA. Results: The median concentration of IFN-γ mRNA was estimated to be 59% (p = 0.006) and of IL-6 to be 44.4% (p = 0.003) of the baseline amount. No significant changes were detected for TNF-α, IL-17, and IL-10 mRNA expression. In contrast, the concentrations of plasma IFN-γ and IL-6 were significantly higher (p = 0.004 and p = 0.048 resp.), and TNF-α was significantly lower (p = 0.006) at ARDS compared to baseline. Conclusions: The change of proinflammatory cytokines IFN-γ and IL-6 expression is different comparing mRNA and plasma proteins at oleic acid-induced ARDS compared to baseline. The migration of cells to the lung may be the cause for this discrepancy.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Humanos , Feminino , Animais , Suínos , Ácido Oleico , Fator de Necrose Tumoral alfa , Interleucina-6 , Citocinas , Lesão Pulmonar Aguda/induzido quimicamente , Síndrome do Desconforto Respiratório/induzido quimicamente
2.
bioRxiv ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38405927

RESUMO

BACKGROUND: The adult human heart following a large myocardial infarction is unable to regenerate heart muscle and instead forms scar with the risk of progressive heart failure. Large animal studies have shown that intramyocardial injection of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) following a myocardial infarction result in cell grafts but also ventricular arrhythmias. We hypothesized that intramyocardial injection of committed cardiac progenitor cells (CCPs) derived from iPSCs, combined with cardiac fibroblast-derived extracellular matrix (cECM) to enhance cell retention will: i) form cardiomyocyte containing functional grafts, ii) be free of ventricular arrhythmias and iii) restore left ventricular contractility in a post-myocardial infarction (MI) cardiomyopathy swine model. METHODS: hiPSCs were differentiated using bioreactors and small molecules to produce a population of committed cardiac progenitor cells (CCPs). MI was created using a coronary artery balloon occlusion and reperfusion model in Yucatan mini pigs. Four weeks later, epicardial needle injections of CCPs+cECM were performed in a small initial feasibility cohort, and then transendocardial injections (TEI) of CCPs+cECM, CCPs alone, cECM alone or vehicle control into the peri-infarct region in a larger randomized cohort. A 4-drug immunosuppression regimen was administered to prevent rejection of human CCPs. Arrhythmias were evaluated using implanted event recorders. Magnetic resonance imaging (MRI) and invasive pressure volume assessment were used to evaluate left ventricular anatomic and functional performance, including viability. Detailed histology was performed on the heart to detect human grafts. RESULTS: A scalable biomanufacturing protocol was developed generating CCPs which can efficiently differentiate to cardiomyocytes or endothelial cells in vitro. Intramyocardial delivery of CCPs to post-MI porcine hearts resulted in engraftment and differentiation of CCPs to form ventricular cardiomyocyte rich grafts. There was no significant difference in cardiac MRI-based measured cardiac volumes or function between control, CCP and CCP+cECM groups; however, dobutamine stimulated functional reserve was improved in CCP and CCP+cECM groups. TEI delivery of CCPs with or without cECM did not result in tumors or trigger ventricular arrhythmias. CONCLUSIONS: CCPs are a promising cell source for post-MI heart repair using clinically relevant TEI with a low risk of engraftment ventricular arrhythmias.

3.
Circulation ; 148(18): 1395-1409, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37732466

RESUMO

BACKGROUND: Remuscularization of the mammalian heart can be achieved after cell transplantation of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs). However, several hurdles remain before implementation into clinical practice. Poor survival of the implanted cells is related to insufficient vascularization, and the potential for fatal arrhythmogenesis is associated with the fetal cell-like nature of immature CMs. METHODS: We generated 3 lines of hiPSC-derived endothelial cells (ECs) and hiPSC-CMs from 3 independent donors and tested hiPSC-CM sarcomeric length, gap junction protein, and calcium-handling ability in coculture with ECs. Next, we examined the therapeutic effect of the cotransplantation of hiPSC-ECs and hiPSC-CMs in nonobese diabetic-severe combined immunodeficiency (NOD-SCID) mice undergoing myocardial infarction (n≥4). Cardiac function was assessed by echocardiography, whereas arrhythmic events were recorded using 3-lead ECGs. We further used healthy non-human primates (n=4) with cell injection to study the cell engraftment, maturation, and integration of transplanted hiPSC-CMs, alone or along with hiPSC-ECs, by histological analysis. Last, we tested the cell therapy in ischemic reperfusion injury in non-human primates (n=4, 3, and 4 for EC+CM, CM, and control, respectively). Cardiac function was evaluated by echocardiography and cardiac MRI, whereas arrhythmic events were monitored by telemetric ECG recorders. Cell engraftment, angiogenesis, and host-graft integration of human grafts were also investigated. RESULTS: We demonstrated that human iPSC-ECs promote the maturity and function of hiPSC-CMs in vitro and in vivo. When cocultured with ECs, CMs showed more mature phenotypes in cellular structure and function. In the mouse model, cotransplantation augmented the EC-accompanied vascularization in the grafts, promoted the maturity of CMs at the infarct area, and improved cardiac function after myocardial infarction. Furthermore, in non-human primates, transplantation of ECs and CMs significantly enhanced graft size and vasculature and improved cardiac function after ischemic reperfusion. CONCLUSIONS: These results demonstrate the synergistic effect of combining iPSC-derived ECs and CMs for therapy in the postmyocardial infarction heart, enabling a promising strategy toward clinical translation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infarto do Miocárdio , Humanos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais/metabolismo , Camundongos SCID , Camundongos Endogâmicos NOD , Infarto do Miocárdio/patologia , Primatas , Diferenciação Celular , Mamíferos
4.
Ultrasound Med Biol ; 49(1): 45-61, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184393

RESUMO

Adaptive Bayesian regularized cardiac strain imaging (ABR-CSI) uses raw radiofrequency signals to estimate myocardial wall contractility as a surrogate measure of relative tissue elasticity incorporating regularization in the Bayesian sense. We determined the feasibility of using ABR-CSI -derived strain for in vivo longitudinal monitoring of cardiac remodeling in a murine ischemic injury model (myocardial infarction [MI] and ischemia-reperfusion [IR]) and validated the findings against ground truth histology. We randomly stratified 30 BALB/CJ mice (17 females, 13 males, median age = 10 wk) into three surgical groups (MI = 10, IR = 12, sham = 8) and imaged pre-surgery (baseline) and 1, 2, 7 and 14 d post-surgery using a pre-clinical high-frequency ultrasound system (VisualSonics Vevo 2100). We then used ABR-CSI to estimate end-systolic and peak radial (er) and longitudinal (el) strain estimates. ABR-CSI was found to have the ability to serially monitor non-uniform cardiac remodeling associated with murine MI and IR non-invasively through temporal variation of strain estimates post-surgery. Furthermore, radial end-systole (ES) strain images and segmental strain curves exhibited improved discrimination among infarct, border and remote regions around the myocardium compared with longitudinal strain results. For example, the MI group had significantly lower (Friedman's with Bonferroni-Dunn test, p = 0.002) ES er values in the anterior middle (infarcted) region at day 14 (n = 9, 9.23 ± 7.39%) compared with the BL group (n = 9, 44.32 ± 5.49). In contrast, anterior basal (remote region) mean ES er values did not differ significantly (non-significant Friedman's test, χ2 = 8.93, p = 0.06) at day 14 (n = 6, 33.05 ± 6.99%) compared with baseline (n = 6, 34.02 ± 6.75%). Histology slides stained with Masson's trichrome (MT) together with a machine learning model (random forest classifier) were used to derive the ground truth cardiac fibrosis parameter termed histology percentage of myocardial fibrosis (PMF). Both radial and longitudinal strain were found to have strong statistically significant correlations with the PMF parameter. However, radial strain had a higher Spearman's correlation value (εresρ = -0.67, n = 172, p < 0.001) compared with longitudinal strain (εlesρ = -0.60, n = 172, p < 0.001). Overall, the results of this study indicate that ABR-CSI can reliably perform non-invasive detection of infarcted and remote myocardium in small animal studies.


Assuntos
Cardiomiopatias , Infarto do Miocárdio , Masculino , Feminino , Camundongos , Animais , Remodelação Ventricular , Teorema de Bayes , Coração , Infarto do Miocárdio/diagnóstico por imagem , Miocárdio
5.
Sci Rep ; 12(1): 8522, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595876

RESUMO

An adaptive Bayesian regularized cardiac strain imaging (ABR-CSI) algorithm for in vivo murine myocardial function assessment is presented. We report on 31 BALB/CJ mice (n = 17 females, n = 14 males), randomly stratified into three surgical groups: myocardial infarction (MI, n = 10), ischemia-reperfusion (IR, n = 13) and control (sham, n = 8) imaged pre-surgery (baseline- BL), and 1, 2, 7 and 14 days post-surgery using a high frequency ultrasound imaging system (Vevo 2100). End-systole (ES) radial and longitudinal strain images were used to generate cardiac fibrosis maps using binary thresholding. Percentage fibrotic myocardium (PFM) computed from regional fibrosis maps demonstrated statistically significant differences post-surgery in scar regions. For example, the MI group had significantly higher PFMRadial (%) values in the anterior mid region (p = 0.006) at Day 14 (n = 8, 42.30 ± 14.57) compared to BL (n = 12, 1.32 ± 0.85). A random forest classifier automatically detected fibrotic regions from ground truth Masson's trichrome stained histopathology whole slide images. Both PFMRadial (r = 0.70) and PFMLongitudinal (r = 0.60) results demonstrated strong, positive correlation with PFMHistopathology (p < 0.001).


Assuntos
Coração , Infarto do Miocárdio , Animais , Teorema de Bayes , Modelos Animais de Doenças , Feminino , Fibrose , Masculino , Camundongos , Infarto do Miocárdio/patologia , Miocárdio/patologia
6.
J Appl Physiol (1985) ; 132(3): 888-901, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35112927

RESUMO

With severe right ventricular (RV) pressure overload, women demonstrate better clinical outcomes compared with men. The mechanoenergetic mechanisms underlying this protective effect, and their dependence on female endogenous sex hormones, remain unknown. To investigate these mechanisms and their impact on RV systolic and diastolic functional adaptation, we created comparable pressure overload via pulmonary artery banding (PAB) in intact male and female Wistar rats and ovariectomized (OVX) female rats. At 8 wk after surgery, right heart catheterization demonstrated increased RV energy input [indexed pressure-volume area (iPVA)] in all PAB groups, with the greatest increase in intact females. PAB also increased RV energy output [indexed stroke or external work (iEW)] in all groups, again with the greatest increase in intact females. In contrast, PAB only increased RV contractility-indexed end-systolic elastance (iEes)] in females. Despite these sex-dependent differences, no statistically significant effects were observed in the ratio of RV energy output to input (mechanical efficiency) or in mechanoenergetic cost to pump blood with pressure overload. These metrics were similarly unaffected by loss of endogenous sex hormones in females. Also, despite sex-dependent differences in collagen content and organization with pressure overload, decreases in RV compliance and relaxation time constant (tau Weiss) were not determined to be sex dependent. Overall, despite sex-dependent differences in RV contractile and fibrotic responses, RV mechanoenergetics for this degree and duration of pressure overload are comparable between sexes and suggest a homeostatic target.NEW & NOTEWORTHY Sex differences in right ventricular mechanical efficiency and energetic adaptation to increased right ventricular afterload were measured. Despite sex-dependent differences in contractile and fibrotic responses, right ventricular mechanoenergetic adaptation was comparable between the sexes, suggesting a homeostatic target.


Assuntos
Caracteres Sexuais , Disfunção Ventricular Direita , Animais , Modelos Animais de Doenças , Feminino , Ventrículos do Coração , Humanos , Masculino , Artéria Pulmonar , Ratos , Ratos Wistar , Função Ventricular Direita/fisiologia , Pressão Ventricular/fisiologia
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2883-2886, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891849

RESUMO

A cardiac strain imaging framework with adaptive Bayesian regularization (ABR) is proposed for in vivo assessment of murine cardiac function. The framework uses ultrasound (US) radio-frequency data collected with a high frequency (fc = 30MHz) imaging system and a multi-level block matching algorithm with ABR to derive inter-frame cardiac displacements. Lagrangian cardiac strain (radial, er and longitudinal, el) tensors were derived by segmenting the myocardial wall starting at the ECG R-wave and accumulating interframe deformations over a cardiac cycle. In vivo feasibility was investigated through a longitudinal study with two mice (one ischemia-perfusion (IR) injury and one sham) imaged at five sessions (pre-surgery (BL) and 1,2,7 and 14 days post-surgery). End-systole (ES) strain images and segmental strain curves were derived for quantitative evaluation. Both mice showed periodic variation of er and el strain at BL with segmental synchroneity. Infarcted regions of IR mouse at Day 14 were associated with reduced or sign reversed ES er and el values while the sham mouse had similar or higher strain than at BL. Infarcted regions identified in vivo were associated with increased collagen content confirmed with Masson's Trichrome stained ex vivo heart sections.Clinical Relevance-Higher quality cardiac strain images derived with RF data and Bayesian regularization can potentially improve the sensitivity and accuracy of non-invasive assessment of cardiovascular disease models.


Assuntos
Algoritmos , Coração , Animais , Teorema de Bayes , Coração/diagnóstico por imagem , Estudos Longitudinais , Camundongos , Ultrassonografia
8.
J Gen Physiol ; 153(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33646280

RESUMO

The Frank-Starling relationship establishes that elevated end-diastolic volume progressively increases ventricular pressure and stroke volume in healthy hearts. The relationship is modulated by a number of physiological inputs and is often depressed in human heart failure. Emerging evidence suggests that cardiac myosin-binding protein-C (cMyBP-C) contributes to the Frank-Starling relationship. We measured contractile properties at multiple levels of structural organization to determine the role of cMyBP-C and its phosphorylation in regulating (1) the sarcomere length dependence of power in cardiac myofilaments and (2) the Frank-Starling relationship in vivo. We compared transgenic mice expressing wild-type cMyBP-C on the null background, which have ∼50% phosphorylated cMyBP-C (Controls), to transgenic mice lacking cMyBP-C (KO) and to mice expressing cMyBP-C that have serine-273, -282, and -302 mutated to aspartate (cMyBP-C t3SD) or alanine (cMyBP-C t3SA) on the null background to mimic either constitutive PKA phosphorylation or nonphosphorylated cMyBP-C, respectively. We observed a continuum of length dependence of power output in myocyte preparations. Sarcomere length dependence of power progressively increased with a rank ordering of cMyBP-C KO = cMyBP-C t3SA < Control < cMyBP-C t3SD. Length dependence of myofilament power translated, at least in part, to hearts, whereby Frank-Starling relationships were steepest in cMyBP-C t3SD mice. The results support the hypothesis that cMyBP-C and its phosphorylation state tune sarcomere length dependence of myofibrillar power, and these regulatory processes translate across spatial levels of myocardial organization to control beat-to-beat ventricular performance.


Assuntos
Estorninhos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Camundongos , Camundongos Transgênicos , Contração Miocárdica , Miocárdio/metabolismo , Fosforilação , Sarcômeros/metabolismo , Estorninhos/metabolismo
9.
Circulation ; 143(20): 1973-1986, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33666092

RESUMO

BACKGROUND: Neonatal mouse cardiomyocytes undergo a metabolic switch from glycolysis to oxidative phosphorylation, which results in a significant increase in reactive oxygen species production that induces DNA damage. These cellular changes contribute to cardiomyocyte cell cycle exit and loss of the capacity for cardiac regeneration. The mechanisms that regulate this metabolic switch and the increase in reactive oxygen species production have been relatively unexplored. Current evidence suggests that elevated reactive oxygen species production in ischemic tissues occurs as a result of accumulation of the mitochondrial metabolite succinate during ischemia via succinate dehydrogenase (SDH), and this succinate is rapidly oxidized at reperfusion. Mutations in SDH in familial cancer syndromes have been demonstrated to promote a metabolic shift into glycolytic metabolism, suggesting a potential role for SDH in regulating cellular metabolism. Whether succinate and SDH regulate cardiomyocyte cell cycle activity and the cardiac metabolic state remains unclear. METHODS: Here, we investigated the role of succinate and SDH inhibition in regulation of postnatal cardiomyocyte cell cycle activity and heart regeneration. RESULTS: Our results demonstrate that injection of succinate into neonatal mice results in inhibition of cardiomyocyte proliferation and regeneration. Our evidence also shows that inhibition of SDH by malonate treatment after birth extends the window of cardiomyocyte proliferation and regeneration in juvenile mice. Remarkably, extending malonate treatment to the adult mouse heart after myocardial infarction injury results in a robust regenerative response within 4 weeks after injury via promoting adult cardiomyocyte proliferation and revascularization. Our metabolite analysis after SDH inhibition by malonate induces dynamic changes in adult cardiac metabolism. CONCLUSIONS: Inhibition of SDH by malonate promotes adult cardiomyocyte proliferation, revascularization, and heart regeneration via metabolic reprogramming. These findings support a potentially important new therapeutic approach for human heart failure.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Malonatos/uso terapêutico , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Animais , Proliferação de Células , Humanos , Masculino , Malonatos/farmacologia , Camundongos , Transdução de Sinais
10.
Am J Physiol Heart Circ Physiol ; 319(6): H1459-H1473, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33064565

RESUMO

Although women are more susceptible to pulmonary arterial hypertension (PAH) than men, their right ventricular (RV) function is better preserved. Estrogen receptor-α (ERα) has been identified as a likely mediator for estrogen protection in the RV. However, the role of ERα in preserving RV function and remodeling during pressure overload remains poorly understood. We hypothesized that loss of functional ERα removes female protection from adverse remodeling and is permissive for the development of a maladapted RV phenotype. Male and female rats with a loss-of-function mutation in ERα (ERαMut) and wild-type (WT) littermates underwent RV pressure overload by pulmonary artery banding (PAB). At 10 wk post-PAB, WT and ERαMut demonstrated RV hypertrophy. Analysis of RV pressure waveforms demonstrated RV-pulmonary vascular uncoupling and diastolic dysfunction in female, but not male, ERαMut PAB rats. Similarly, female, but not male, ERαMut exhibited increased RV fibrosis, comprised primarily of thick collagen fibers. There was an increased protein expression ratio of TIMP metallopeptidase inhibitor 1 (Timp1) to matrix metalloproteinase 9 (Mmp9) in female ERαMut compared with WT PAB rats, suggesting less collagen degradation. RNA-sequencing in female WT and ERαMut RV revealed kallikrein-related peptidase 10 (Klk10) and Jun Proto-Oncogene (Jun) as possible mediators of female RV protection during PAB. In summary, ERα in females is protective against RV-pulmonary vascular uncoupling, diastolic dysfunction, and fibrosis in response to pressure overload. ERα appears to be dispensable for RV adaptation in males. ERα may be a mediator of superior RV adaptation in female patients with PAH.NEW & NOTEWORTHY Using a novel loss-of-function mutation in estrogen receptor-α (ERα), we demonstrate that female, but not male, ERα mutant rats display right ventricular (RV)-vascular uncoupling, diastolic dysfunction, and fibrosis following pressure overload, indicating a sex-dependent role of ERα in protecting against adverse RV remodeling. TIMP metallopeptidase inhibitor 1 (Timp1), matrix metalloproteinase 9 (Mmp9), kallikrein-related peptidase 10 (Klk10), and Jun Proto-Oncogene (Jun) were identified as potential mediators in ERα-regulated pathways in RV pressure overload.


Assuntos
Receptor alfa de Estrogênio/metabolismo , Hipertrofia Ventricular Direita/prevenção & controle , Miocárdio/metabolismo , Disfunção Ventricular Direita/prevenção & controle , Função Ventricular Direita , Remodelação Ventricular , Animais , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Feminino , Colágenos Fibrilares/metabolismo , Fibrose , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Calicreínas/genética , Calicreínas/metabolismo , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Mutação , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos Mutantes , Ratos Sprague-Dawley , Fatores Sexuais , Transdução de Sinais , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/patologia , Disfunção Ventricular Direita/fisiopatologia
12.
J Vis Exp ; (150)2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31475976

RESUMO

The incidence of clinical benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS) is increasing due to the aging population, resulting in a significant economic and quality of life burden. Transgenic and other mouse models have been developed to recreate various aspects of this multifactorial disease; however, methods to accurately quantitate urinary dysfunction and the effectiveness of new therapeutic options are lacking. Here, we describe a method that can be used to measure bladder volume and detrusor wall thickness, urinary velocity, void volume and void duration, and urethral diameter. This would allow for the evaluation of disease progression and treatment efficacy over time. Mice were anesthetized with isoflurane, and the bladder was visualized by ultrasound. For non-contrast imaging, a 3D image was taken of the bladder to calculate volume and evaluate shape; the bladder wall thickness was measured from this image. For contrast-enhanced imaging, a catheter was placed through the dome of the bladder using a 27-gauge needle connected to a syringe by PE50 tubing. A bolus of 0.5 mL of contrast was infused into the bladder until a urination event occurred. Urethral diameter was determined at the point of the Doppler velocity sample window during the first voiding event. Velocity was measured for each subsequent event yielding a flow rate. In conclusion, high frequency ultrasound proved to be an effective method for assessing bladder and urethral measurements during urinary function in mice. This technique may be useful in the assessment of novel therapies for BPH/LUTS in an experimental setting.


Assuntos
Imageamento Tridimensional/métodos , Ultrassonografia/métodos , Fenômenos Fisiológicos do Sistema Urinário , Sistema Urinário/diagnóstico por imagem , Fatores Etários , Animais , Sintomas do Trato Urinário Inferior/diagnóstico por imagem , Sintomas do Trato Urinário Inferior/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hiperplasia Prostática/diagnóstico por imagem , Hiperplasia Prostática/fisiopatologia , Obstrução do Colo da Bexiga Urinária/diagnóstico por imagem , Obstrução do Colo da Bexiga Urinária/fisiopatologia , Micção/fisiologia
13.
Pharmacol Res Perspect ; 7(4): e00500, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31338199

RESUMO

Managing myocardial infarction (MI) to reduce cardiac cell death relies primarily on timely reperfusion of the affected coronary site, but reperfusion itself induces cell death through a toxic, ROS-mediated process. In this study, we determined whether the PrC-210 aminothiol ROS-scavenger could prevent ROS-induced damage in post-MI hearts. In a series of both in vitro and in vivo experiments, we show that: (a) in vitro, PrC-210 was the most potent and effective ROS-scavenger when functionally compared to eight of the most commonly studied antioxidants in the MI literature, (b) in vitro PrC-210 ROS-scavenging efficacy was both immediate (seconds) and long-lasting (hours), which would make it effective in both (1) real-time (seconds), as post-MI or cardiac surgery hearts are reperfused with PrC-210-containing blood, and (2) long-term (hours), as hearts are bathed with systemic PrC-210 after MI or surgery, (c) systemic PrC-210 caused a significant 36% reduction of mouse cardiac muscle death following a 45-minute cardiac IR insult; in a striking coincidence, the PrC-210 36% reduction in cardiac muscle death equals the 36% of the MI-induced cardiac cell death estimated 6 years ago by Ovize and colleagues to result from "reperfusion injury," (d) hearts in PrC-210-treated mice performed better than controls after heart attacks when functionally analyzed using echocardiography, and (e) the PrC-210 ROS-scavenging mechanism of action was corroborated by its ability to prevent >85% of the direct, H2O2-induced killing of neonate cardiomyocytes in cell culture. PrC-210 does not cause the nausea, emesis, nor hypotension that preclude clinical use of the WR-1065/amifostine aminothiol. PrC-210 is a highly effective ROS-scavenger that significantly reduces IR injury-associated cardiac cell death.


Assuntos
Diaminas/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/administração & dosagem , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Diaminas/farmacologia , Modelos Animais de Doenças , Peróxido de Hidrogênio/efeitos adversos , Masculino , Camundongos , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Compostos de Sulfidrila/farmacologia
14.
Stem Cells ; 37(7): 910-923, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31087611

RESUMO

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) exhibit a fetal phenotype that limits in vitro and therapeutic applications. Strategies to promote cardiomyocyte maturation have focused interventions on differentiated hPSC-CMs, but this study tests priming of early cardiac progenitor cells (CPCs) with polyinosinic-polycytidylic acid (pIC) to accelerate cardiomyocyte maturation. CPCs were differentiated from hPSCs using a monolayer differentiation protocol with defined small molecule Wnt temporal modulation, and pIC was added during the formation of early CPCs. pIC priming did not alter the expression of cell surface markers for CPCs (>80% KDR+/PDGFRα+), expression of common cardiac transcription factors, or final purity of differentiated hPSC-CMs (∼90%). However, CPC differentiation in basal medium revealed that pIC priming resulted in hPSC-CMs with enhanced maturity manifested by increased cell size, greater contractility, faster electrical upstrokes, increased oxidative metabolism, and more mature sarcomeric structure and composition. To investigate the mechanisms of CPC priming, RNAseq revealed that cardiac progenitor-stage pIC modulated early Notch signaling and cardiomyogenic transcriptional programs. Chromatin immunoprecipitation of CPCs showed that pIC treatment increased deposition of the H3K9ac activating epigenetic mark at core promoters of cardiac myofilament genes and the Notch ligand, JAG1. Inhibition of Notch signaling blocked the effects of pIC on differentiation and cardiomyocyte maturation. Furthermore, primed CPCs showed more robust formation of hPSC-CMs grafts when transplanted to the NSGW mouse kidney capsule. Overall, epigenetic modulation of CPCs with pIC accelerates cardiomyocyte maturation enabling basic research applications and potential therapeutic uses. Stem Cells 2019;37:910-923.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Epigênese Genética , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Poli I-C/farmacologia , Receptores Notch/genética , Animais , Tamanho Celular , Histonas/genética , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Rim , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Fosforilação Oxidativa , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores Notch/metabolismo , Sarcômeros/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Transplante de Células-Tronco/métodos , Transplante Heterotópico , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 316(5): H1005-H1013, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30822119

RESUMO

Right ventricular failure (RVF) is a common cause of death in patients suffering from pulmonary arterial hypertension (PAH). The current treatment for PAH only moderately improves symptoms, and RVF ultimately occurs. Therefore, it is necessary to develop new treatment strategies to protect against right ventricle (RV) maladaptation despite PAH progression. In this study, we hypothesize that local mesenchymal stem cell (MSC) delivery via a novel bioscaffold can improve RV function despite persistent PAH. To test our hypothesis, we induced PAH in adult rats with SU5416 and chronic hypoxia exposure; treated with rat MSCs delivered by intravenous injection, intramyocardial injection, or epicardial placement of a bioscaffold; and then examined treatment effectiveness by in vivo pressure-volume measurement, echocardiography, histology, and immunohistochemistry. Our results showed that compared with other treatment groups, only the MSC-seeded bioscaffold group resulted in RV functional improvement, including restored stroke volume, cardiac output, and improved stroke work. Diastolic function indicated by end-diastolic pressure-volume relationship was improved by the local MSC treatments or bioscaffold alone. Cardiomyocyte hypertrophy and RV fibrosis were both reduced, and von Willebrand factor expression was restored by the MSC-seeded bioscaffold treatment. Overall, our study suggests a potential new regenerative therapy to rescue the pressure-overload failing RV with persistent pulmonary vascular disease, which may improve quality of life and/or survival of PAH patients. NEW & NOTEWORTHY We explored the effects of mesenchymal stem cell-seeded bioscaffold on right ventricles (RVs) of rats with established pulmonary arterial hypertension (PAH). Some beneficial effects were observed despite persistent PAH, suggesting that this may be a new therapy for RV to improve quality of life and/or survival of PAH patients.


Assuntos
Pressão Arterial , Hipertrofia Ventricular Direita/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Hipertensão Arterial Pulmonar/cirurgia , Artéria Pulmonar/fisiopatologia , Alicerces Teciduais , Disfunção Ventricular Direita/cirurgia , Função Ventricular Direita , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Hipóxia/complicações , Indóis , Masculino , Contração Miocárdica , Miocárdio/metabolismo , Miocárdio/patologia , Hipertensão Arterial Pulmonar/etiologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/fisiopatologia , Pirróis , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Regeneração , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia , Remodelação Ventricular , Fator de von Willebrand/metabolismo
16.
J Clin Invest ; 128(2): 655-667, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29251627

RESUMO

A critical event in the adaptation to extrauterine life is relaxation of the pulmonary vasculature at birth, allowing for a rapid increase in pulmonary blood flow that is essential for efficient gas exchange. Failure of this transition leads to pulmonary hypertension (PH), a major cause of newborn mortality associated with preterm birth, infection, hypoxia, and malformations including congenital diaphragmatic hernia (CDH). While individual vasoconstrictor and dilator genes have been identified, the coordination of their expression is not well understood. Here, we found that lung mesenchyme-specific deletion of CDH-implicated genes encoding pre-B cell leukemia transcription factors (Pbx) led to lethal PH in mice shortly after birth. Loss of Pbx genes resulted in the misexpression of both vasoconstrictors and vasodilators in multiple pathways that converge to increase phosphorylation of myosin in vascular smooth muscle (VSM) cells, causing persistent constriction. While targeting endothelin and angiotensin, which are upstream regulators that promote VSM contraction, was not effective, treatment with the Rho-kinase inhibitor Y-27632 reduced vessel constriction and PH in Pbx-mutant mice. These results demonstrate a lung-intrinsic, herniation-independent cause of PH in CDH. More broadly, our findings indicate that neonatal PH can result from perturbation of multiple pathways and suggest that targeting the downstream common effectors may be a more effective treatment for neonatal PH.


Assuntos
Hérnias Diafragmáticas Congênitas/etiologia , Proteínas de Homeodomínio/metabolismo , Pulmão/embriologia , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Alelos , Animais , Apoptose , Proliferação de Células , Modelos Animais de Doenças , Ecocardiografia , Elastina/metabolismo , Feminino , Deleção de Genes , Hipertensão Pulmonar/etiologia , Pulmão/irrigação sanguínea , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Miosinas/metabolismo , Parto , Fosforilação , Artéria Pulmonar/metabolismo , Respiração , Vasoconstrição/fisiologia
17.
Front Physiol ; 8: 840, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118720

RESUMO

Infants born premature are at increased risk for development of bronchopulmonary dysplasia (BPD), pulmonary hypertension (PH), and ultimately right ventricular (RV) dysfunction, which together carry a high risk of neonatal mortality. However, the role alveolar simplification and abnormal pulmonary microvascular development in BPD affects RV contractile properties is unknown. We used a rat model of BPD to examine the effect of hyperoxia-induced PH on RV contractile properties. We measured in vivo RV pressure as well as passive force, maximum Ca2+ activated force, calcium sensitivity of force (pCa50) and rate of force redevelopment (ktr) in RV skinned trabeculae isolated from hearts of 21-and 35-day old rats pre-exposed to 21% oxygen (normoxia) or 85% oxygen (hyperoxia) for 14 days after birth. Systolic and diastolic RV pressure were significantly higher at day 21 in hyperoxia exposed rats compared to normoxia control rats, but normalized by 35 days of age. Passive force, maximum Ca2+ activated force, and calcium sensitivity of force were elevated and cross-bridge cycling kinetics depressed in 21-day old hyperoxic trabeculae, whereas no differences between normoxic and hyperoxic trabeculae were seen at 35 days. Myofibrillar protein analysis revealed that 21-day old hyperoxic trabeculae had increased levels of beta-myosin heavy chain (ß-MHC), atrial myosin light chain 1 (aMLC1; often referred to as essential light chain), and slow skeletal troponin I (ssTnI) compared to age matched normoxic trabeculae. On the other hand, 35-day old normoxic and hyperoxic trabeculae expressed similar level of α- and ß-MHC, ventricular MLC1 and predominantly cTnI. These results suggest that neonatal exposure to hyperoxia increases RV afterload and affect both the steady state and dynamic contractile properties of the RV, likely as a result of hyperoxia-induced expression of ß-MHC, delayed transition of slow skeletal TnI to cardiac TnI, and expression of atrial MLC1. These hyperoxia-induced changes in contractile properties are reversible and accompany the resolution of PH with further developmental age, underscoring the importance of reducing RV afterload to allow for normalization of RV function in both animal models and humans with BPD.

18.
Arterioscler Thromb Vasc Biol ; 37(1): 75-83, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856454

RESUMO

OBJECTIVE: Nucleotide P2Y2 receptor (P2Y2R) contributes to vascular inflammation by increasing vascular cell adhesion molecule-1 expression in endothelial cells (EC), and global P2Y2R deficiency prevents fatty streak formation in apolipoprotein E null (ApoE-/-) mice. Because P2Y2R is ubiquitously expressed in vascular cells, we investigated the contribution of endothelial P2Y2R in the pathogenesis of atherosclerosis. APPROACH AND RESULTS: EC-specific P2Y2R-deficient mice were generated by breeding VEcadherin5-Cre mice with the P2Y2R floxed mice. Endothelial P2Y2R deficiency reduced endothelial nitric oxide synthase activity and significantly altered ATP- and UTP (uridine 5'-triphosphate)-induced vasorelaxation without affecting vasodilatory responses to acetylcholine. Telemetric blood pressure and echocardiography measurements indicated that EC-specific P2Y2R-deficient mice did not develop hypertension. We investigated the role of endothelial P2Y2R in the development of atherosclerotic lesions by crossing the EC-specific P2Y2R knockout mice onto an ApoE-/- background and evaluated lesion development after feeding a standard chow diet for 25 weeks. Histopathologic examination demonstrated reduced atherosclerotic lesions in the aortic sinus and entire aorta, decreased macrophage infiltration, and increased smooth muscle cell and collagen content, leading to the formation of a subendothelial fibrous cap in EC-specific P2Y2R-deficient ApoE-/- mice. Expression and proteolytic activity of matrix metalloproteinase-2 was significantly reduced in atherosclerotic lesions from EC-specific P2Y2R-deficient ApoE-/- mice. Furthermore, EC-specific P2Y2R deficiency inhibited nitric oxide production, leading to significant increase in smooth muscle cell migration out of aortic explants. CONCLUSIONS: EC-specific P2Y2R deficiency reduces atherosclerotic burden and promotes plaque stability in ApoE-/- mice through impaired macrophage infiltration acting together with reduced matrix metalloproteinase-2 activity and increased smooth muscle cell migration.


Assuntos
Aorta Torácica/metabolismo , Doenças da Aorta/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Placa Aterosclerótica , Receptores Purinérgicos P2Y2/deficiência , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Movimento Celular , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Fibrose , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y2/genética , Ruptura Espontânea , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
19.
Stem Cells Transl Med ; 5(12): 1668-1675, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27460855

RESUMO

: Cell tracking is a critical component of the safety and efficacy evaluation of therapeutic cell products. To date, cell-tracking modalities have been hampered by poor resolution, low sensitivity, and inability to track cells beyond the shortterm. Three-dimensional (3D) cryo-imaging coregisters fluorescent and bright-field microcopy images and allows for single-cell quantification within a 3D organ volume. We hypothesized that 3D cryo-imaging could be used to measure cell biodistribution and clearance after intravenous infusion in a rat lung injury model compared with normal rats. A bleomycin lung injury model was established in Sprague-Dawley rats (n = 12). Human mesenchymal stem cells (hMSCs) labeled with QTracker655 were infused via jugular vein. After 2, 4, or 8 days, a second dose of hMSCs labeled with QTracker605 was infused, and animals were euthanized after 60, 120, or 240 minutes. Lungs, liver, spleen, heart, kidney, testis, and intestine were cryopreserved, followed by 3D cryo-imaging of each organ. At 60 minutes, 82% ± 9.7% of cells were detected; detection decreased to 60% ± 17% and 66% ± 22% at 120 and 240 minutes, respectively. At day 2, 0.06% of cells were detected, and this level remained constant at days 4 and 8 postinfusion. At 60, 120, and 240 minutes, 99.7% of detected cells were found in the liver, lungs, and spleen, with cells primarily retained in the liver. This is the first study using 3D cryo-imaging to track hMSCs in a rat lung injury model. hMSCs were retained primarily in the liver, with fewer detected in lungs and spleen. SIGNIFICANCE: Effective bench-to-bedside clinical translation of cellular therapies requires careful understanding of cell fate through tracking. Tracking cells is important to measure cell retention so that delivery methods and cell dose can be optimized and so that biodistribution and clearance can be defined to better understand potential off-target toxicity and redosing strategies. This article demonstrates, for the first time, the use of three-dimensional cryo-imaging for single-cell quantitative tracking of intravenous infused clinical-grade mesenchymal stem cells in a clinically relevant model of lung injury. The important information learned in this study will help guide future clinical and translational stem cell therapies for lung injuries.


Assuntos
Imageamento Tridimensional , Lesão Pulmonar/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Humanos , Infusões Intravenosas , Lesão Pulmonar/patologia , Microscopia de Fluorescência , Especificidade de Órgãos , Ratos Sprague-Dawley , Distribuição Tecidual
20.
Cytotherapy ; 18(4): 536-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26971682

RESUMO

BACKGROUND AIMS: In the field of cellular therapy, potential cell entrapment in the lungs following intravenous administration in a compromised or injured pulmonary system is an important concern that requires further investigation. We developed a rat model of inflammatory and fibrotic lung disease to mimic the human clinical condition of obliterative bronchiolitis (OB) and evaluate the safety of intravenous infusion of mesenchymal stromal cells (MSCs). This model was used to obtain appropriate safety information and functional characterization to support the translation of an ex vivo-generated cellular product into human clinical trials. To overcome spontaneous recovery and size limitations associated with current animal models, we used a novel multiple dose bleomycin strategy to induce lasting lung injury in rats. METHODS: Intratracheal instillation of bleomycin was administered to rats on multiple days. MSCs were intravenously infused 7 days apart. Detailed pulmonary function tests including forced expiratory volume, total lung capacity, and invasive hemodynamic measurements were conducted to define the representative disease model and monitor cardiopulmonary hemodynamic consequences of the cell infusion. Post-euthanasia assessments included a thorough evaluation of lung morphology and histopathology. RESULTS: The double dose bleomycin instillation regimen resulted in severe and irreversible lung injury and fibrosis. Cardiopulmonary physiological monitoring reveled that no adverse events could be attributed to the cell infusion process. DISCUSSION: Although our study did not show the infusion of MSCs to result in an improvement in lung function or rescue of damaged tissue this study does confirm the safety of MSC infusion into damaged lungs.


Assuntos
Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/terapia , Pulmão/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Miocárdio/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/fisiopatologia , Animais , Bleomicina , Modelos Animais de Doenças , Frequência Cardíaca , Humanos , Infusões Intravenosas , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/métodos , Ratos , Ratos Sprague-Dawley , Testes de Função Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA