Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(22): 6177-6193, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37941952

RESUMO

We designed and prepared a novel N-heterocycle-based nanocatalyst by a post synthetic method, namely the [Fe3O4@DAA-BTrzPhen-Cu(ii)] composite. In this method, bistriazolyl-phenanthroline groups were stepwise synthesized on an Fe3O4 substrate and used as a tetradentate nitrogenous ligand for coordinating to copper ions. The obtained nanocomposite was well characterized using FT-IR, PXRD, TGA, EDAX, ICP-OES, EDX-mapping, SEM, TEM, VSM and BET analyses, which confirm the formation of a thermostable crystalline spherical particle morphology with the particle size in the range of 17 nm to 25 nm and a magnetization value of 42 emu g-1. Also, the catalytic activity of [Fe3O4@DAA-BTrzPhen-Cu(ii)] as a novel and magnetically separable heterogeneous nanocatalyst was evaluated in preparing various tetrasubstituted imidazole derivatives from one-pot four-component condensation of anilines, aldehydes, 1,2-diketones and ammonium acetate, and favorable products were produced with excellent yields. The stability, low Cu leaching, and heterogenous nature of the nanocatalyst were confirmed by hot-filtration and leaching tests. The copper based nanocatalyst could be easily recovered by magnetic field separation and recycled at least 8 times in a row without noticeable loss in its catalytic activity.

2.
Comput Biol Med ; 158: 106832, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037148

RESUMO

BACKGROUND AND OBJECTIVE: The molecular dynamics (MD) simulation is a powerful tool for researching how cancer patients are treated. The efficiency of many factors may be predicted using this approach in great detail and with atomic accuracy. METHODS: The MD simulation method was used to investigate the impact of porosity and the number of cancer cells on the atomic behavior of cancer cells during the hematogenous spread. In order to examine the stability of simulated structures, temperature and potential energy (PE) values are used. To evaluate how cell structure has changed, physical parameters such as gyration radius, interaction force, and interaction energy are also used. RESULTS: The findings demonstrate that the samples' gyration radius, interaction energy, and interaction force rose from 41.33 Å, -551.38 kcal/mol, and -207.10 kcal/mol Å to 49.49, -535.94 kcal/mol, and -190.05 kcal/mol Å, respectively, when the porosity grew from 0% to 5%. Also, the interaction energy and force in the samples fell from -551.38 kcal/mol and -207.10 kcal/mol to -588.03 kcal/mol and -237.81 kcal/mol Å, and the amount of gyration radius reduced from 41.33 to 37.14 Å as the number of cancer cells rose from 1 to 5 molecules. The strength and stability of the simulated samples will improve when the radius of gyration is decreased. CONCLUSIONS: Therefore, high accumulation of cancer cells will make them resistant to atomic collapse. It is expected that the results of this simulation should be used to optimize cancer treatment processes further.


Assuntos
Simulação de Dinâmica Molecular , Neoplasias , Humanos , Porosidade , Simulação de Acoplamento Molecular
3.
Biofactors ; 49(4): 718-735, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876465

RESUMO

Drug resistance is a hot topic issue in cancer research and therapy. Although cancer therapy including radiotherapy and anti-cancer drugs can kill malignant cells within the tumor, cancer cells can develop a wide range of mechanisms to resist the toxic effects of anti-cancer agents. Cancer cells may provide some mechanisms to resist oxidative stress and escape from apoptosis and attack by the immune system. Furthermore, cancer cells may resist senescence, pyroptosis, ferroptosis, necroptosis, and autophagic cell death by modulating several critical genes. The development of these mechanisms leads to resistance to anti-cancer drugs and also radiotherapy. Resistance to therapy can increase mortality and reduce survival following cancer therapy. Thus, overcoming mechanisms of resistance to cell death in malignant cells can facilitate tumor elimination and increase the efficiency of anti-cancer therapy. Natural-derived molecules are intriguing agents that may be suggested to be used as an adjuvant in combination with other anticancer drugs or radiotherapy to sensitize cancer cells to therapy with at least side effects. This paper aims to review the potential of triptolide for inducing various types of cell death in cancer cells. We review the induction or resistance to different cell death mechanisms such as apoptosis, autophagic cell death, senescence, pyroptosis, ferroptosis, and necrosis following the administration of triptolide. We also review the safety and future perspectives for triptolide and its derivatives in experimental and human studies. The anticancer potential of triptolide and its derivatives may make them effective adjuvants for enhancing tumor suppression in combination with anticancer therapy.


Assuntos
Antineoplásicos , Diterpenos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Morte Celular , Apoptose , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA