Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 14(11): 9055-9076, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38868098

RESUMO

Metallaphotoredox catalysis can unlock useful pathways for transforming organic reactants into desirable products, largely due to the conversion of photon energy into chemical potential to drive redox and bond transformation processes. Despite the importance of these processes for cross-coupling reactions and other transformations, their mechanistic details are only superficially understood. In this review, we have provided a detailed summary of various photoredox mechanisms that have been proposed to date for Ni-bipyridine (bpy) complexes, focusing separately on photosensitized and direct excitation reaction processes. By highlighting multiple bond transformation pathways and key findings, we depict how photoredox reaction mechanisms, which ultimately define substrate scope, are themselves defined by the ground- and excited-state geometric and electronic structures of key Ni-based intermediates. We further identify knowledge gaps to motivate future mechanistic studies and the development of synergistic research approaches spanning the physical, organic, and inorganic chemistry communities.

2.
Sci Adv ; 10(13): eadk7201, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536910

RESUMO

Enzymes populate ensembles of structures necessary for catalysis that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography at an x-ray free electron laser to observe catalysis in a designed mutant isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations, and formation of the thioimidate intermediate selects for catalytically competent substates. The influence of cysteine ionization on the ICH ensemble is validated by determining structures of the enzyme at multiple pH values. Large molecular dynamics simulations in crystallo and time-resolved electron density maps show that Asp17 ionizes during catalysis and causes conformational changes that propagate across the dimer, permitting water to enter the active site for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Cristalografia por Raios X , Proteínas/química , Catálise , Conformação Proteica , Hidrolases
3.
Inorg Chem ; 63(9): 4120-4131, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38376134

RESUMO

Transition-metal photoredox catalysis has transformed organic synthesis by harnessing light to construct complex molecules. Nickel(II)-bipyridine (bpy) aryl halide complexes are a significant class of cross-coupling catalysts that can be activated via direct light excitation. This study investigates the effects of molecular structure on the photophysics of these catalysts by considering an underexplored, structurally constrained Ni(II)-bpy aryl halide complex in which the aryl and bpy ligands are covalently tethered alongside traditional unconstrained complexes. Intriguingly, the tethered complex is photochemically stable but features a reversible Ni(II)-C(aryl) ⇄ [Ni(I)···C(aryl)•] equilibrium upon direct photoexcitation. When an electrophile is introduced during photoirradiation, we demonstrate a preference for photodissociation over recombination, rendering the parent Ni(II) complex a stable source of a reactive Ni(I) intermediate. Here, we characterize the reversible photochemical behavior of the tethered complex by kinetic analyses, quantum chemical calculations, and ultrafast transient absorption spectroscopy. Comparison to the previously characterized Ni(II)-bpy aryl halide complex indicates that the structural constraints considered here dramatically influence the excited state relaxation pathway and provide insight into the characteristics of excited-state Ni(II)-C bond homolysis and aryl radical reassociation dynamics. This study enriches the understanding of molecular structure effects in photoredox catalysis and offers new possibilities for designing customized photoactive catalysts for precise organic synthesis.

4.
Inorg Chem ; 62(34): 14010-14027, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37584501

RESUMO

NiII(IB) dihalide [IB = (3aR,3a'R,8aS,8a'S)-2,2'-(cyclopropane-1,1-diyl)bis(3a,8a-dihydro-8H-indeno[1,2-d]-oxazole)] complexes are representative of a growing class of first-row transition-metal catalysts for the enantioselective reductive cross-coupling of C(sp2) and C(sp3) electrophiles. Recent mechanistic studies highlight the complexity of these ground-state cross-couplings but also illuminate new reactivity pathways stemming from one-electron redox and their significant sensitivities to reaction conditions. For the first time, a diverse array of spectroscopic methods coupled to electrochemistry have been applied to NiII-based precatalysts to evaluate specific ligand field effects governing key Ni-based redox potentials. We also experimentally demonstrate DMA solvent coordination to catalytically relevant Ni complexes. Coordination is shown to favorably influence key redox-based reaction steps and prevent other deleterious Ni-based equilibria. Combined with electronic structure calculations, we further provide a direct correlation between reaction intermediate frontier molecular orbital energies and cross-coupling yields. Considerations developed herein demonstrate the use of synergic spectroscopic and electrochemical methods to provide concepts for catalyst ligand design and rationalization of reaction condition optimization.

5.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645800

RESUMO

Enzymes populate ensembles of structures with intrinsically different catalytic proficiencies that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL) to observe catalysis in a designed mutant (G150T) isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations and formation of the thioimidate catalytic intermediate selects for catalytically competent substates. A prior proposal for active site cysteine charge-coupled conformational changes in ICH is validated by determining structures of the enzyme over a range of pH values. A combination of large molecular dynamics simulations of the enzyme in crystallo and time-resolved electron density maps shows that ionization of the general acid Asp17 during catalysis causes additional conformational changes that propagate across the dimer interface, connecting the two active sites. These ionization-linked changes in the ICH conformational ensemble permit water to enter the active site in a location that is poised for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.

6.
Inorg Chem ; 61(50): 20493-20500, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36479938

RESUMO

Iron 5,10,15,20-tetra(para-N,N,N-trimethylanilinium)porphyrin (Fe-p-TMA) is a water-soluble catalyst capable of electrochemical and photochemical CO2 reduction. Although its catalytic ability has been thoroughly investigated, the mechanism and associated intermediates are largely unknown. Previous studies proposed that Fe-p-TMA enters catalytic cycles as a monomeric species. However, we demonstrate herein that, in aqueous solutions, Fe-p-TMA undergoes formation of a µ-oxo porphyrin dimer that exists in equilibrium with its monomeric form. The propensity for µ-oxo formation is highly dependent on the solution pH and ionic strength. Indeed, the µ-oxo form is stabilized in the presence of electrolytes that are key components of catalytically relevant conditions. By leveraging the ability to chemically control and spectrally address both species, we characterize their ground-state electronic structures and excited-state photodynamics. Global fitting of ultrafast transient absorption data reveals two distinct excited-state relaxation pathways: a three-component sequential model consistent with monomeric relaxation and a two-component sequential model for the µ-oxo species. Relaxation of the monomeric species is best described as a ligand-to-metal charge transfer (τ1 = ∼500 fs), an ionic strength-dependent metal-to-ligand charge transfer (τ2 = 2-4 ps), and finally relaxation of a ligand field excited state to the ground state (τ3 = 5 ps). Conversely, excited-state relaxation of the µ-oxo species proceeds via cleavage of an FeIII-O bond to generate transient FeIV═O and FeII porphyrin species (τ1 = 2 ps) that recombine to the ground-state µ-oxo species (τ2 = ∼1 ns). This latter lifetime extends to timescales relevant for chemical reactivity. It is therefore emphasized that further consideration of catalyst speciation and chemical microenvironments is necessary for elucidating the mechanisms of catalytic CO2 reduction reactions.


Assuntos
Porfirinas , Dimerização , Água/química , Dióxido de Carbono , Ligantes , Compostos Férricos/química , Ferro/química
7.
J Am Chem Soc ; 144(14): 6516-6531, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35353530

RESUMO

Ni 2,2'-bipyridine (bpy) complexes are commonly employed photoredox catalysts of bond-forming reactions in organic chemistry. However, the mechanisms by which they operate are still under investigation. One potential mode of catalysis is via entry into Ni(I)/Ni(III) cycles, which can be made possible by light-induced, excited-state Ni(II)-C bond homolysis. Here, we report experimental and computational analyses of a library of Ni(II)-bpy aryl halide complexes, Ni(Rbpy)(R'Ph)Cl (R = MeO, t-Bu, H, MeOOC; R' = CH3, H, OMe, F, CF3), to illuminate the mechanism of excited-state bond homolysis. At given excitation wavelengths, photochemical homolysis rate constants span 2 orders of magnitude across these structures and correlate linearly with Hammett parameters of both bpy and aryl ligands, reflecting structural control over key metal-to-ligand charge-transfer (MLCT) and ligand-to-metal charge-transfer (LMCT) excited-state potential energy surfaces (PESs). Temperature- and wavelength-dependent investigations reveal moderate excited-state barriers (ΔH‡ ∼ 4 kcal mol-1) and a minimum energy excitation threshold (∼55 kcal mol-1, 525 nm), respectively. Correlations to electronic structure calculations further support a mechanism in which repulsive triplet excited-state PESs featuring a critical aryl-to-Ni LMCT lead to bond rupture. Structural control over excited-state PESs provides a rational approach to utilize photonic energy and leverage excited-state bond homolysis processes in synthetic chemistry.


Assuntos
Compostos Heterocíclicos , Níquel , Catálise , Ligantes , Níquel/química
8.
Nat Commun ; 12(1): 4218, 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244515

RESUMO

Iron alloying of oxidic cobaltate catalysts results in catalytic activity for oxygen evolution on par with Ni-Fe oxides in base but at much higher alloying compositions. Zero-field 57Fe Mössbauer spectroscopy and X-ray absorption spectroscopy (XAS) are able to clearly identify Fe4+ in mixed-metal Co-Fe oxides. The highest Fe4+ population is obtained in the 40-60% Fe alloying range, and XAS identifies the ion residing in an octahedral oxide ligand field. The oxygen evolution reaction (OER) activity, as reflected in Tafel analysis of CoFeOx films in 1 M KOH, tracks the absolute concentration of Fe4+. The results reported herein suggest an important role for the formation of the Fe4+ redox state in activating cobaltate OER catalysts at high iron loadings.

9.
Nat Commun ; 12(1): 1086, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597529

RESUMO

The dynamics of photodissociation and recombination in heme proteins represent an archetypical photochemical reaction widely used to understand the interplay between chemical dynamics and reaction environment. We report a study of the photodissociation mechanism for the Fe(II)-S bond between the heme iron and methionine sulfur of ferrous cytochrome c. This bond dissociation is an essential step in the conversion of cytochrome c from an electron transfer protein to a peroxidase enzyme. We use ultrafast X-ray solution scattering to follow the dynamics of Fe(II)-S bond dissociation and 1s3p (Kß) X-ray emission spectroscopy to follow the dynamics of the iron charge and spin multiplicity during bond dissociation. From these measurements, we conclude that the formation of a triplet metal-centered excited state with anti-bonding Fe(II)-S interactions triggers the bond dissociation and precedes the formation of the metastable Fe high-spin quintet state.


Assuntos
Citocromos c/metabolismo , Compostos Ferrosos/metabolismo , Ferro/metabolismo , Metais/metabolismo , Metionina/metabolismo , Citocromos c/química , Transporte de Elétrons/efeitos da radiação , Compostos Ferrosos/química , Heme/química , Heme/metabolismo , Ferro/química , Metais/química , Metionina/química , Simulação de Dinâmica Molecular , Fotólise , Espectrometria por Raios X
10.
J Phys Chem A ; 124(48): 9915-9922, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33226235

RESUMO

Multireference electronic structure calculations consistent with known experimental data have elucidated a novel mechanism for photo-triggered Ni(II)-C homolytic bond dissociation in Ni 2,2'-bipyridine (bpy) photoredox catalysts. Previously, a thermally assisted dissociation from the lowest energy triplet ligand field excited state was proposed and supported by density functional theory (DFT) calculations that reveal a barrier of ∼30 kcal mol-1. In contrast, multireference ab initio calculations suggest that this process is disfavored, with barrier heights of ∼70 kcal mol-1, and highlight important ligand noninnocent and multiconfigurational contributions to excited state relaxation and bond dissociation processes that are not captured with DFT. In the multireference description, photo-triggered Ni(II)-C homolytic bond dissociation occurs via initial population of a singlet Ni(II)-to-bpy metal-to-ligand charge transfer (1MLCT) excited state, followed by intersystem crossing and aryl-to-Ni(III) charge transfer, overall a formal two-electron transfer process driven by a single photon. This results in repulsive triplet excited states from which spontaneous homolytic bond dissociation can occur, effectively competing with relaxation to the lowest energy nondissociative triplet Ni(II) ligand field excited state. These findings guide important electronic structure considerations for the experimental and computational elucidation of the mechanisms of ground and excited state cross-coupling catalysis mediated by Ni heteroaromatic complexes.

11.
Proc Natl Acad Sci U S A ; 117(28): 16187-16192, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32636264

RESUMO

Earth-abundant oxygen evolution catalysts (OECs) with extended stability in acid can be constructed by embedding active sites within an acid-stable metal-oxide framework. Here, we report stable NiPbOx films that are able to perform oxygen evolution reaction (OER) catalysis for extended periods of operation (>20 h) in acidic solutions of pH 2.5; conversely, native NiOx catalyst films dissolve immediately. In situ X-ray absorption spectroscopy and ex situ X-ray photoelectron spectroscopy reveal that PbO2 is unperturbed after addition of Ni and/or Fe into the lattice, which serves as an acid-stable, conductive framework for embedded OER active centers. The ability to perform OER in acid allows the mechanism of Fe doping on Ni catalysts to be further probed. Catalyst activity with Fe doping of oxidic Ni OEC under acid conditions, as compared to neutral or basic conditions, supports the contention that role of Fe3+ in enhancing catalytic activity in Ni oxide catalysts arises from its Lewis acid properties.

12.
Inorg Chem ; 59(13): 8707-8715, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32510941

RESUMO

Iron porphyrin carbenes (IPCs) are important reaction intermediates in engineered carbene transferase enzymes and homogeneous catalysis. However, discrepancies between theory and experiment complicate the understanding of IPC electronic structure. In the literature, this has been framed as whether the ground state is an open- vs closed-shell singlet (OSS vs CSS). Here we investigate the structurally dependent ground and excited spin-state energetics of a free carbene and its IPC analogs with variable trans axial ligands. In particular, for IPCs, multireference ab initio wave function methods are more consistent with experiment and predict a mixed singlet ground state that is dominated by the CSS (Fe(II) ← {:C(X)Y}0) configuration (i.e., electrophilic carbene) but that also has a small, non-negligible contribution from an Fe(III)-{C(X)Y}-• configuration (hole in d(xz), i.e., radical carbene). In the multireference approach, the "OSS-like" excited states are metal-to-ligand charge transfer (MLCT) in nature and are energetically well above the CSS-dominated ground state. The first, lowest energy of these "OSS-like" excited states is predicted to be heavily weighted toward the Fe(III)-{C(X)Y}-• (hole in d(yz)) configuration. As expected from exchange considerations, this state falls energetically above a triplet of the same configuration. Furthermore, potential energy surfaces (PESs) along the IPC Fe-C(carbene) bond elongation exhibit increasingly strong mixings between CSS/OSS characters, with the Fe(III)-{C(X)Y}-• configuration (hole in d(xz)) growing in weight in the ground state during bond elongation. The relative degree of electrophilic/radical carbene character along this structurally relevant PES can potentially play a role in reactivity and selectivity patterns in catalysis. Future studies on IPC reaction coordinates should evaluate contributions from ground and excited state multireference character.

13.
J Chem Phys ; 152(20): 204306, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486684

RESUMO

Magnetization dynamics of transition metal complexes manifest in properties and phenomena of fundamental and applied interest [e.g., slow magnetic relaxation in single molecule magnets, quantum coherence in quantum bits (qubits), and intersystem crossing (ISC) rates in photophysics]. While spin-phonon coupling is recognized as an important determinant of these dynamics, additional fundamental studies are required to unravel the nature of the coupling and, thus, leverage it in molecular engineering approaches. To this end, we describe here a combined ligand field theory and multireference ab initio model to define spin-phonon coupling terms in S = 2 transition metal complexes and demonstrate how couplings originate from both the static and dynamic properties of ground and excited states. By extending concepts to spin conversion processes, ligand field dynamics manifest in the evolution of the excited state origins of zero-field splitting (ZFS) along specific normal mode potential energy surfaces. Dynamic ZFSs provide a powerful means to independently evaluate contributions from spin-allowed and/or spin-forbidden excited states to spin-phonon coupling terms. Furthermore, ratios between various intramolecular coupling terms for a given mode drive spin conversion processes in transition metal complexes and can be used to analyze the mechanisms of ISC. Variations in geometric structure strongly influence the relative intramolecular linear spin-phonon coupling terms and will define the overall spin state dynamics. While the findings of this study are of general importance for understanding magnetization dynamics, they also link the phenomenon of spin-phonon coupling across fields of single molecule magnetism, quantum materials/qubits, and transition metal photophysics.

14.
Proc Natl Acad Sci U S A ; 115(48): 12124-12129, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30429333

RESUMO

A direct, catalytic conversion of benzene to phenol would have wide-reaching economic impacts. Fe zeolites exhibit a remarkable combination of high activity and selectivity in this conversion, leading to their past implementation at the pilot plant level. There were, however, issues related to catalyst deactivation for this process. Mechanistic insight could resolve these issues, and also provide a blueprint for achieving high performance in selective oxidation catalysis. Recently, we demonstrated that the active site of selective hydrocarbon oxidation in Fe zeolites, named α-O, is an unusually reactive Fe(IV)=O species. Here, we apply advanced spectroscopic techniques to determine that the reaction of this Fe(IV)=O intermediate with benzene in fact regenerates the reduced Fe(II) active site, enabling catalytic turnover. At the same time, a small fraction of Fe(III)-phenolate poisoned active sites form, defining a mechanism for catalyst deactivation. Density-functional theory calculations provide further insight into the experimentally defined mechanism. The extreme reactivity of α-O significantly tunes down (eliminates) the rate-limiting barrier for aromatic hydroxylation, leading to a diffusion-limited reaction coordinate. This favors hydroxylation of the rapidly diffusing benzene substrate over the slowly diffusing (but more reactive) oxygenated product, thereby enhancing selectivity. This defines a mechanism to simultaneously attain high activity (conversion) and selectivity, enabling the efficient oxidative upgrading of inert hydrocarbon substrates.


Assuntos
Benzeno/química , Ferro/química , Zeolitas/química , Catálise , Domínio Catalítico , Hidroxilação , Cinética , Modelos Moleculares , Estrutura Molecular , Oxirredução , Oxigênio/química , Fenol/química
15.
Chem Sci ; 9(4): 860-875, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29629153

RESUMO

The kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(i) bis(phenanthroline)/ruthenium(ii) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(i)-Ru(ii) analogs of the homodinuclear Cu(i)-Cu(i) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These results suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations.

16.
Chem Sci ; 8(1): 515-523, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451198

RESUMO

Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover - the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN-) ligands and one 2,2'-bipyridine (bpy) ligand. This enables MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kß hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN)4(bpy)]2-. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kß fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. We conclude that the MLCT excited state of [Fe(CN)4(bpy)]2- decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine)3]2+ by more than two orders of magnitude.

17.
Proc Natl Acad Sci U S A ; 114(7): 1486-1491, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137835

RESUMO

Iron doping of nickel oxide films results in enhanced activity for promoting the oxygen evolution reaction (OER). Whereas this enhanced activity has been ascribed to a unique iron site within the nickel oxide matrix, we show here that Fe doping influences the Ni valency. The percent of Fe3+ doping promotes the formation of formal Ni4+, which in turn directly correlates with an enhanced activity of the catalyst in promoting OER. The role of Fe3+ is consistent with its behavior as a superior Lewis acid.

18.
Nature ; 509(7500): 345-8, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24805234

RESUMO

Crucial to many light-driven processes in transition metal complexes is the absorption and dissipation of energy by 3d electrons. But a detailed understanding of such non-equilibrium excited-state dynamics and their interplay with structural changes is challenging: a multitude of excited states and possible transitions result in phenomena too complex to unravel when faced with the indirect sensitivity of optical spectroscopy to spin dynamics and the flux limitations of ultrafast X-ray sources. Such a situation exists for archetypal polypyridyl iron complexes, such as [Fe(2,2'-bipyridine)3](2+), where the excited-state charge and spin dynamics involved in the transition from a low- to a high-spin state (spin crossover) have long been a source of interest and controversy. Here we demonstrate that femtosecond resolution X-ray fluorescence spectroscopy, with its sensitivity to spin state, can elucidate the spin crossover dynamics of [Fe(2,2'-bipyridine)3](2+) on photoinduced metal-to-ligand charge transfer excitation. We are able to track the charge and spin dynamics, and establish the critical role of intermediate spin states in the crossover mechanism. We anticipate that these capabilities will make our method a valuable tool for mapping in unprecedented detail the fundamental electronic excited-state dynamics that underpin many useful light-triggered molecular phenomena involving 3d transition metal complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA