Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 189(3): 568-579, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30593821

RESUMO

The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) transcription factor is a key regulator of the cellular stress response. Therefore, pharmacologic Nrf2 activation is a promising strategy for skin protection and cancer prevention. This study found that genetic Nrf2 activation in keratinocytes accelerates wound repair. Enhanced proliferation of cells of the pilosebaceous unit peripheral to the wound and a concomitant acceleration of re-epithelialization were identified as the underlying mechanism. Nrf2 specifically promoted the expansion of pilosebaceous cells expressing markers of junctional zone and upper isthmus follicular stem cells. This may result, at least in part, from the up-regulation of the direct Nrf2 target epigen and a concomitant increase in epidermal growth factor receptor signaling. The increase in pilosebaceous cells provided a larger pool of keratinocytes that migrate into the wound, resulting in faster wound closure. These results unravel a novel function of Nrf2 in wound repair and suggest the use of NRF2-activating compounds in patients with impaired healing.


Assuntos
Regulação da Expressão Gênica , Queratinócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Reepitelização , Transdução de Sinais , Pele/metabolismo , Animais , Queratinócitos/patologia , Camundongos , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Pele/patologia
2.
Dev Cell ; 46(2): 145-161.e10, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30016619

RESUMO

Nrf2 is a key regulator of the antioxidant defense system, and pharmacological Nrf2 activation is a promising strategy for cancer prevention and promotion of tissue repair. Here we show, however, that activation of Nrf2 in fibroblasts induces cellular senescence. Using a combination of transcriptomics, matrix proteomics, chromatin immunoprecipitation and bioinformatics we demonstrate that fibroblasts with activated Nrf2 deposit a senescence-promoting matrix, with plasminogen activator inhibitor-1 being a key inducer of the senescence program. In vivo, activation of Nrf2 in fibroblasts promoted re-epithelialization of skin wounds, but also skin tumorigenesis. The pro-tumorigenic activity is of general relevance, since Nrf2 activation in skin fibroblasts induced the expression of genes characteristic for cancer-associated fibroblasts from different mouse and human tumors. Therefore, activated Nrf2 qualifies as a marker of the cancer-associated fibroblast phenotype. These data highlight the bright and the dark sides of Nrf2 and the need for time-controlled activation of this transcription factor.


Assuntos
Reprogramação Celular/fisiologia , Fibroblastos/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Animais , Antioxidantes/metabolismo , Carcinogênese/metabolismo , Proliferação de Células , Senescência Celular/fisiologia , Matriz Extracelular/fisiologia , Regulação da Expressão Gênica/fisiologia , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Pele/metabolismo , Cicatrização/fisiologia
3.
Cell Death Dis ; 9(2): 24, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348630

RESUMO

Inflammasomes are multimeric protein complexes that assemble upon sensing of a variety of stress factors. Their formation results in caspase-1-mediated activation and secretion of the pro-inflammatory cytokines pro-interleukin(IL)-1ß and -18, which induce an inflammatory response. Inflammation is supported by a lytic form of cell death, termed pyroptosis. Innate immune cells, such as macrophages or dendritic cells, express and activate inflammasomes. However, it has also been demonstrated that human primary keratinocytes activate different types of inflammasomes in vitro, for example, upon UVB irradiation or viral infection. Keratinocytes are the main cell type of the epidermis, the outermost layer of the body, and form a protective barrier consisting of a stratified multi-layered epithelium. In human, gain-of-function mutations of the NLRP1 gene cause syndromes mediated by inflammasome activation in keratinocytes that are characterised by skin inflammation and skin cancer susceptibility. Here we demonstrate that murine keratinocytes do not activate inflammasomes in response to stimuli, which induce IL-1ß and -18 secretion by human keratinocytes. Whereas murine keratinocytes produced caspase-1 and proIL-18, expression of the inflammasome proteins Nlrp1, Nlrp3, Aim2, Asc, and proIL-1ß was, compared to human keratinocytes or murine dendritic cells, very low or even undetectable. Priming of murine keratinocytes with cytokines commonly used for induction of proIL-1ß and inflammasome protein expression did not rescue inflammasome activation. Nevertheless, UVB-induced inflammation and neutrophil recruitment in murine skin was dependent on IL-1ß and caspase-1. However, also under these conditions, we did not detect expression of proIL-1ß by keratinocytes in murine skin, but by immune cells. These results demonstrate a higher immunological competence of human compared to murine keratinocytes, which is reflected by stress-induced IL-1ß secretion that is mediated by inflammasomes. Therefore, keratinocytes in human skin can exert immune functions, which are carried out by professional immune cells in murine skin.


Assuntos
Inflamassomos/metabolismo , Queratinócitos/metabolismo , Animais , Humanos , Camundongos
4.
Cancer Res ; 75(22): 4817-29, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26530903

RESUMO

Pharmacologic activation of the transcription factor NRF2 has been suggested to offer a strategy for cancer prevention. In this study, we present evidence from murine tumorigenesis experiments suggesting there may be limitations to this possibility, based on tumorigenic effects of Nrf2 in murine keratinocytes that have not been described previously. In this setting, Nrf2 expression conferred metabolic alterations in keratinocytes that were protumorigenic in nature, affecting enzymes involved in glutathione biosynthesis or in the oxidative pentose phosphate pathway and other NADPH-producing enzymes. Under stress conditions, coordinate increases in NADPH, purine, and glutathione levels promoted the survival of keratinocytes harboring oncogenic mutations, thereby promoting tumor development. The protumorigenic activity of Nrf2 in keratinocytes was particularly significant in a mouse model of skin tumorigenesis that did not rely upon chemical carcinogenesis. In exploring the clinical relevance of our findings, we confirm that NRF2 and protumorigenic NRF2 target genes were activated in some actinic keratoses, the major precancerous lesion in human skin. Overall, our results reveal an unexpected tumor-promoting activity of activated NRF2 during early phases of skin tumorigenesis.


Assuntos
Carcinogênese/genética , Queratinócitos/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Animais , Sobrevivência Celular , Humanos , Queratinócitos/metabolismo , Ceratose Actínica/genética , Ceratose Actínica/metabolismo , Ceratose Actínica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
Immunol Lett ; 132(1-2): 69-78, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20566350

RESUMO

Dendritic cells (DCs) are very important for the generation of long lasting immune responses against pathogens or the induction of anti-tumor responses. Targeting antigen to dendritic cells via monoclonal antibodies specific for DC cell surface receptors such as DEC205 was shown to elicit potent cellular and humoral immune responses in vivo. Therefore, we investigated whether this novel strategy might also be useful for the generation of new monoclonal antibodies against molecules of choice. We show, that by targeting the extracellular domain of the human C-type lectin receptor ClecSF6/DCIR/LLIR (hDCIR) to DEC205 on DCs in vivo, we were able to generate highly specific monoclonal antibodies against hDCIR.


Assuntos
Anticorpos Monoclonais/biossíntese , Células Dendríticas/imunologia , Lectinas Tipo C/imunologia , Glicoproteínas de Membrana/imunologia , Receptores Imunológicos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Apresentação de Antígeno/imunologia , Antígeno CD11c/metabolismo , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA