Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Top Microbiol Immunol ; 279: 153-67, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14560957

RESUMO

During normal development, cellular and organismal growth is coordinately regulated. Each cell and each individual organ integrates information about nutrient availability, hormonal signals, and intrinsic growth programs. Describing the signaling pathways involved in these processes and how they are integrated is important to understand how growth is controlled during development and may also permit the development of means to curb uncontrolled growth in disease. In recent years, the biochemical analysis of cellular growth in cultured cells and the genetic dissection of growth control in model organisms has identified two conserved signaling pathways dedicated to cellular growth. The target of rapamycin (TOR) pathway regulates growth in response to nutrients, and the insulin/IGF pathways are involved in coordinating cellular growth in response to endocrine signals. This review discusses recent advances in the understanding of the interaction between these pathways, with a special focus on the contribution of the genetic analysis of these pathways in Drosophila.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Substâncias de Crescimento/fisiologia , Proteínas Serina-Treonina Quinases , Receptores Proteína Tirosina Quinases/fisiologia , Animais , Insulina/fisiologia , Mutação , Proteínas/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Repressoras/fisiologia , Proteínas Quinases S6 Ribossômicas/fisiologia , Transdução de Sinais/fisiologia , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor
2.
Swiss Med Wkly ; 134(49-50): 711-9, 2004 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-15635489

RESUMO

The tumour suppressor gene PTEN is, next to p53, the second most frequently mutated gene in human cancers. The genes TSC1 and TSC2 are mutated in the severe human syndrome called Tuberous Sclerosis. Patients with this disease have large benign tumours composed of large cells in the brain. The genetic dissection of pathways controlling the growth of cells, organs, and the entire organism in Drosophila has contributed to the understanding of the signalling pathways that are controlled by these two tumour suppressors. Together with studies on nutrient regulation of growth and ageing in the nematode Caenorhabditis elegans, evidence from these model organisms has moved the Insulin/IGF (IIS) and the Target Rapamycin (TOR) signalling pathway onto the centre stage of cellular growth control and made them attractive novel targets for cancer therapy. In this review, I will outline the contributions of model organism genetics to the understanding of these disease relevant pathways and highlight the evolutionary conservation of nutrient-dependent growth regulation.


Assuntos
Envelhecimento/genética , Caenorhabditis elegans/genética , Diabetes Mellitus Tipo 2/genética , Drosophila/genética , Crescimento/genética , Neoplasias/genética , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Fenômenos Fisiológicos Celulares , Drosophila/crescimento & desenvolvimento , Genes Supressores de Tumor , Crescimento/fisiologia , Humanos , Mutação , Transdução de Sinais , Esclerose Tuberosa/genética
3.
Proc Natl Acad Sci U S A ; 98(26): 15020-5, 2001 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-11752451

RESUMO

The insulin/insulin-like growth factor-1 signaling pathway promotes growth in invertebrates and vertebrates by increasing the levels of phosphatidylinositol 3,4,5-triphosphate through the activation of p110 phosphatidylinositol 3-kinase. Two key effectors of this pathway are the phosphoinositide-dependent protein kinase 1 (PDK1) and Akt/PKB. Although genetic analysis in Caenorhabditis elegans has implicated Akt as the only relevant PDK1 substrate, cell culture studies have suggested that PDK1 has additional targets. Here we show that, in Drosophila, dPDK1 controls cellular and organism growth by activating dAkt and S6 kinase, dS6K. Furthermore, dPDK1 genetically interacts with dRSK but not with dPKN, encoding two substrates of PDK1 in vitro. Thus, the results suggest that dPDK1 is required for dRSK but not dPKN activation and that it regulates insulin-mediated growth through two main effector branches, dAkt and dS6K.


Assuntos
Drosophila/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Quinases S6 Ribossômicas/fisiologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Sequência de Aminoácidos , Animais , Sequência de Bases , Primers do DNA , Drosophila/genética , Proteínas de Drosophila , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Homologia de Sequência de Aminoácidos
4.
Development ; 128(9): 1687-96, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11290305

RESUMO

Ras mediates a plethora of cellular functions during development. In the developing eye of Drosophila, Ras performs three temporally separate functions. In dividing cells, it is required for growth but is not essential for cell cycle progression. In postmitotic cells, it promotes survival and subsequent differentiation of ommatidial cells. In the present paper, we have analyzed the different roles of Ras during eye development by using molecularly defined complete and partial loss-of-function mutations of Ras. We show that the three different functions of Ras are mediated by distinct thresholds of MAPK activity. Low MAPK activity prolongs cell survival and permits differentiation of R8 photoreceptor cells while high or persistent MAPK activity is sufficient to precociously induce R1-R7 photoreceptor differentiation in dividing cells.


Assuntos
Drosophila/fisiologia , Olho/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Proteínas ras/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Sobrevivência Celular , Olho/citologia , Modelos Biológicos , Mutação , Células Fotorreceptoras de Invertebrados/citologia , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas ras/genética
5.
Curr Biol ; 11(4): 213-21, 2001 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-11250149

RESUMO

BACKGROUND: Size regulation is fundamental in developing multicellular organisms and occurs through the control of cell number and cell size. Studies in Drosophila have identified an evolutionarily conserved signaling pathway that regulates organismal size and that includes the Drosophila insulin receptor substrate homolog Chico, the lipid kinase PI(3)K (Dp110), DAkt1/dPKB, and dS6K. RESULTS: We demonstrate that varying the activity of the Drosophila insulin receptor homolog (DInr) during development regulates organ size by changing cell size and cell number in a cell-autonomous manner. An amino acid substitution at the corresponding position in the kinase domain of the human and Drosophila insulin receptors causes severe growth retardation. Furthermore, we show that the Drosophila genome contains seven insulin-like genes that are expressed in a highly tissue- and stage-specific pattern. Overexpression of one of these insulin-like genes alters growth control in a DInr-dependent manner. CONCLUSIONS: This study shows that the Drosophila insulin receptor autonomously controls cell and organ size, and that overexpression of a gene encoding an insulin-like peptide is sufficient to increase body size.


Assuntos
Sequência Conservada/fisiologia , Drosophila/crescimento & desenvolvimento , Evolução Molecular , Proteínas de Insetos/fisiologia , Insulina/fisiologia , Peptídeos/fisiologia , Receptor IGF Tipo 1/fisiologia , Receptor de Insulina/fisiologia , Sequência de Aminoácidos , Aminoácidos , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Contagem de Células , Divisão Celular , Tamanho Celular , Drosophila/genética , Drosophila/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Genes de Insetos , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insulina/genética , Insulina/metabolismo , Dados de Sequência Molecular , Mutagênese , Peptídeos/genética , Peptídeos/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/fisiologia , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
6.
Development ; 128(5): 791-800, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11171403

RESUMO

Members of the AF4/FMR2 family of nuclear proteins are involved in human diseases such as acute lymphoblastic leukemia and mental retardation. Here we report the identification and characterization of the Drosophila lilliputian (lilli) gene, which encodes a nuclear protein related to mammalian AF4 and FMR2. Mutations in lilli suppress excessive neuronal differentiation in response to a constitutively active form of Raf in the eye. In the wild type, Lilli has a partially redundant function in the Ras/MAPK pathway in differentiation but it is essential for normal growth. Loss of Lilli function causes an autonomous reduction in cell size and partially suppresses the increased growth associated with loss of PTEN function. These results suggest that Lilli acts in parallel with the Ras/MAPK and the PI3K/PKB pathways in the control of cell identity and cellular growth.


Assuntos
Drosophila melanogaster/embriologia , Proteínas de Insetos/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Fotorreceptoras de Invertebrados/citologia , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Fatores de Transcrição , Proteínas Supressoras de Tumor , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Diferenciação Celular , Núcleo Celular/metabolismo , Tamanho Celular , DNA/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Embrião não Mamífero/citologia , Desenvolvimento Embrionário , Genes de Insetos , Mutação em Linhagem Germinativa , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , PTEN Fosfo-Hidrolase , Fenótipo , Fosfatidilinositol 3-Quinases/genética , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Células Fotorreceptoras de Invertebrados/embriologia , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Alinhamento de Sequência , Proteínas ras/metabolismo
7.
Dev Biol ; 238(1): 145-56, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11784000

RESUMO

Modulation of reactive oxygen species (ROS) plays a key role in signal transduction pathways. Selenoproteins act controlling the redox balance of the cell. We have studied how the alteration of the redox balance caused by patufet (selD(ptuf)), a null mutation in the Drosophila melanogaster selenophosphate synthetase 1 (sps1) gene, which codes for the SelD enzyme of the selenoprotein biosynthesis, affects the Ras/MAPK signalling pathway. The selD(ptuf) mutation dominantly suppresses the phenotypes in the eye and the wing caused by hyperactivation of the Ras/MAPK cassette and the activated forms of the Drosophila EGF receptor (DER) and Sevenless (Sev) receptor tyrosine kinases (RTKs), which signal in the eye and wing, respectively. No dominant interaction is observed with sensitized conditions in the Wnt, Notch, Insulin-Pi3K, and DPP signalling pathways. Our current hypothesis is that selenoproteins selectively modulate the Ras/MAPK signalling pathway through their antioxidant function. This is further supported by the fact that a selenoprotein-independent increase in ROS caused by the catalase amorphic Cat(n1) allele also reduces Ras/MAPK signalling. Here, we present the first evidence for the role of intracellular redox environment in signalling pathways in Drosophila as a whole organism.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/metabolismo , MAP Quinases Reguladas por Sinal Extracelular , Olho/metabolismo , Sistema de Sinalização das MAP Quinases , Oxirredução , Fosfotransferases/biossíntese , Fosfotransferases/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores Proteína Tirosina Quinases , Alelos , Animais , Antioxidantes/farmacologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Catalase/metabolismo , Receptores ErbB/metabolismo , Proteínas do Olho/metabolismo , Genes Dominantes , Genótipo , Heterozigoto , Glicoproteínas de Membrana/metabolismo , Microscopia Eletrônica de Varredura , Mutação , Fenômenos Fisiológicos Oculares , Fenótipo , Ligação Proteica , Biossíntese de Proteínas , Espécies Reativas de Oxigênio/metabolismo , Selenoproteínas , Transdução de Sinais
8.
Curr Opin Genet Dev ; 10(5): 529-35, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10980431

RESUMO

Over the past 25 years, the genetic control of cell size has mainly been addressed in yeast, a single-celled organism. Recent insights from Drosophila have shed light on the signalling pathways responsible for adjusting and maintaining cell size in metazoans. Evidence is emerging for a signalling cascade conserved in evolution that links external nutrient sources to cell size.


Assuntos
Tamanho Celular/genética , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas Supressoras de Tumor , Animais , Ciclo Celular/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-myc/fisiologia , Receptor de Insulina/fisiologia , Transdução de Sinais
9.
Development ; 126(23): 5365-72, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10556061

RESUMO

Mutations in the tumor suppressor gene PTEN (MMAC1/TEP1) are associated with a large number of human cancers and several autosomal-dominant disorders. Mice mutant for PTEN die at early embryonic stages and the mutant embryonic fibroblasts display decreased sensitivity to cell death. Overexpression of PTEN in different mammalian tissue culture cells affects various processes including cell proliferation, cell death and cell migration. We have characterized the Drosophila PTEN gene and present evidence that both inactivation and overexpression of PTEN affect cell size, while overexpression of PTEN also inhibits cell cycle progression at early mitosis and promotes cell death during eye development in a context-dependent manner. Furthermore, we have shown that PTEN acts in the insulin signaling pathway and all signals from the insulin receptor can be antagonized by either Drosophila or human PTEN, suggesting a potential means for alleviating symptoms associated with altered insulin signaling.


Assuntos
Apoptose/genética , Drosophila/genética , Olho/embriologia , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Supressoras de Tumor , Sequência de Aminoácidos , Animais , Divisão Celular/genética , Tamanho Celular/genética , Clonagem Molecular , Olho/citologia , Fase G1/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Supressores de Tumor , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insulina/metabolismo , Larva , Dados de Sequência Molecular , PTEN Fosfo-Hidrolase , Receptor de Insulina/metabolismo , Fase S/genética , Homologia de Sequência de Aminoácidos , Transdução de Sinais
10.
Science ; 285(5436): 2126-9, 1999 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-10497130

RESUMO

Cell proliferation requires cell growth; that is, cells only divide after they reach a critical size. However, the mechanisms by which cells grow and maintain their appropriate size have remained elusive. Drosophila deficient in the S6 kinase gene (dS6K) exhibited an extreme delay in development and a severe reduction in body size. These flies had smaller cells rather than fewer cells. The effect was cell-autonomous, displayed throughout larval development, and distinct from that of ribosomal protein mutants (Minutes). Thus, the dS6K gene product regulates cell size in a cell-autonomous manner without impinging on cell number.


Assuntos
Drosophila melanogaster/enzimologia , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas Quinases S6 Ribossômicas/metabolismo , Asas de Animais/citologia , Animais , Sequência de Bases , Constituição Corporal , Contagem de Células , Divisão Celular , Tamanho Celular , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Células Epiteliais/citologia , Feminino , Genes de Insetos , Larva/citologia , Larva/crescimento & desenvolvimento , Masculino , Metamorfose Biológica , Dados de Sequência Molecular , Mutação , Proteínas Quinases S6 Ribossômicas/genética , Asas de Animais/crescimento & desenvolvimento
11.
Mol Cell Biol ; 19(3): 1928-37, 1999 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10022880

RESUMO

Mammalian Ras GTPase-activating protein (GAP), p120 Ras-GAP, has been implicated as both a downregulator and effector of Ras proteins, but its precise role in Ras-mediated signal transduction pathways is unclear. To begin a genetic analysis of the role of p120 Ras-GAP we identified a homolog from the fruit fly Drosophila melanogaster through its ability to complement the sterility of a Schizosaccharomyces pombe (fission yeast) gap1 mutant strain. Like its mammalian homolog, Drosophila RasGAP stimulated the intrinsic GTPase activity of normal mammalian H-Ras but not that of the oncogenic Val12 mutant. RasGAP was tyrosine phosphorylated in embryos and its Src homology 2 (SH2) domains could bind in vitro to a small number of tyrosine-phosphorylated proteins expressed at various developmental stages. Ectopic expression of RasGAP in the wing imaginal disc reduced the size of the adult wing by up to 45% and suppressed ectopic wing vein formation caused by expression of activated forms of Breathless and Heartless, two Drosophila receptor tyrosine kinases of the fibroblast growth factor receptor family. The in vivo effects of RasGAP overexpression required intact SH2 domains, indicating that intracellular localization of RasGAP through SH2-phosphotyrosine interactions is important for its activity. These results show that RasGAP can function as an inhibitor of signaling pathways mediated by Ras and receptor tyrosine kinases in vivo. Genetic interactions, however, suggested a Ras-independent role for RasGAP in the regulation of growth. The system described here should enable genetic screens to be performed to identify regulators and effectors of p120 Ras-GAP.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , GTP Fosfo-Hidrolases/fisiologia , Proteínas/fisiologia , Proteínas ras/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , DNA Complementar , Regulação para Baixo , Proteínas Ativadoras de GTPase , Expressão Gênica , Dados de Sequência Molecular , Proteínas/genética , Receptores Proteína Tirosina Quinases/metabolismo , Schizosaccharomyces , Transdução de Sinais , Asas de Animais , Proteínas Ativadoras de ras GTPase , Proteínas ras/genética
12.
Dev Biol ; 206(2): 178-88, 1999 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-9986731

RESUMO

Dominant mutations have served as invaluable tools for Drosophila geneticists. Here we analyze the dominant eye mutation Glazed (Gla) that was described by T. H. Morgan more than 50 years ago. We show that Gla causes the loss of photoreceptor cells during pupal stages, in a process reminiscent of apoptosis, with a concomitant overproduction of eye pigment. This phenotype is very similar to that caused by the loss of D-APC, a negative regulator of Wingless (Wg) signal transduction. Genetic analyses reveal however that the Gla gain-of-function phenotype can be reverted to wild-type. By generating a P-element-induced revertant of Gla we demonstrate that Gla is allelic to wg. The molecular lesion in Gla indicates that the insertion of a roo retrotransposon leads to ectopic expression of wg during pupal stages. We show that the Gla phenotype is similar to that caused by ectopic expression of Wg driven by the sevenless (sev) enhancer. In both cases Wg exerts its effect, at least in part, by negatively regulating the expression of the Pax2 homolog sparkling (spa). Gla represents not only the first dominant allele of wg, but it may also be the first allele ever described for wg.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Olho/crescimento & desenvolvimento , Genes de Insetos , Mutação , Alelos , Animais , Sequência de Bases , Primers do DNA/genética , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Proteínas do Olho/genética , Genes Dominantes , Proteínas de Insetos/genética , Microscopia Eletrônica de Varredura , Mutagênese Insercional , Fenótipo , Proteínas Proto-Oncogênicas/genética , Pupa/crescimento & desenvolvimento , Sequências Repetidas Terminais , Proteína Wnt1
13.
Cell Tissue Res ; 294(2): 203-17, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9799436

RESUMO

The "cysteine string protein" (CSP) genes of higher eukaryotes code for a novel family of proteins characterized by a "J" domain and an unusual cysteine-rich region. Previous studies had localized the proteins in neuropil and synaptic terminals of larval and adult Drosophila and linked the temperature-sensitive paralysis of the mutants described here to conditional failure of synaptic transmission. We now use the null mutants as negative controls in order to reliably detect even low concentrations of CSPs by immunohistochemistry, employing three monoclonal antibodies. In wild-type flies high levels of cysteine string proteins are found not only in apparently all synaptic terminals of the embryonic, larval, and adult nervous systems, but also in the "tall cells" of the cardia, in the follicle cells of the ovary, in specific structures of the female spermatheca, and in the male testis and ejaculatory bulb. In addition, low levels of CSPs appear to be present in all tissues examined, including neuronal perikarya, axons, muscles, Malpighian tubules, and salivary glands. Western blots of isolated tissues demonstrate that of the four isoforms expressed in heads only the largest is found in non-neural organs. The wide expression of CSPs suggests that at least some of the various phenotypes of the null mutants observed at permissive temperatures, such as delayed development, short adult lifespan, modified electroretinogram, and optomotor behavior, may be caused by the lack of CSPs outside synaptic terminals.


Assuntos
Drosophila melanogaster/genética , Proteínas de Insetos/genética , Proteínas de Membrana/genética , Fatores Etários , Animais , Western Blotting , Chaperoninas/química , Chaperoninas/genética , Clonagem Molecular , Eletrorretinografia , Exocitose/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Choque Térmico HSP40 , Proteínas de Insetos/química , Larva/química , Larva/fisiologia , Masculino , Proteínas de Membrana/análise , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida/fisiologia , Proteínas do Tecido Nervoso/análise , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/química , Sistema Nervoso/crescimento & desenvolvimento , Fenótipo , Terminações Pré-Sinápticas/química , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Temperatura
14.
Curr Opin Genet Dev ; 8(4): 412-8, 1998 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9729716

RESUMO

With the number of known roles played by Ras proteins increasing rapidly, finding answers to how the diverse cellular responses are triggered is becoming increasingly pertinent. Although our understanding of the control of specificity of signal transduction is still small, the combination of biochemical, structural and genetic analyses is starting to reveal how the cell-specific responses to Ras activation are controlled.


Assuntos
Transdução de Sinais , Proteínas ras/fisiologia , Animais , Ciclo Celular , Ativação Enzimática , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo
15.
Science ; 278(5338): 669-72, 1997 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-9381174

RESUMO

The Drosophila homolog of c-Jun regulates epithelial cell shape changes during the process of dorsal closure in mid-embryogenesis. Here, mutations in the DFos gene are described. In dorsal closure, DFos cooperates with DJun by regulating the expression of dpp; Dpp acts as a relay signal that triggers cell shape changes and DFos expression in neighboring cells. In addition to the joint requirement of DFos and DJun during dorsal closure, DFos functions independently of DJun during early stages of embryogenesis. These findings demonstrate common and distinct roles of DFos and DJun during embryogenesis and suggest a conserved link between AP-1 (activating protein-1) and TGF-beta (transforming growth factor-beta) signaling during epithelial cell shape changes.


Assuntos
Proteínas de Drosophila , Drosophila/embriologia , Proteínas Quinases JNK Ativadas por Mitógeno , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Proto-Oncogênicas c-fos/fisiologia , Proteínas Proto-Oncogênicas c-jun/fisiologia , Animais , Tamanho Celular , Dimerização , Drosophila/genética , Drosophila/metabolismo , Ectoderma/metabolismo , Endoderma/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Genes fos , Genes jun , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , MAP Quinase Quinase 4 , Metamorfose Biológica , Mutação , Peptidil Dipeptidase A/genética , Fenótipo , Mutação Puntual , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
16.
Genes Dev ; 11(13): 1717-27, 1997 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-9224720

RESUMO

During Drosophila embryogenesis, ectodermal cells of the lateral epithelium stretch in a coordinated fashion to internalize the amnioserosa cells and close the embryo dorsally. This process, dorsal closure, requires two signaling pathways: the Drosophila Jun-amino-terminal kinase (DJNK) pathway and the Dpp pathway. We have identified mutations in DJun and show that DJNK controls dorsal closure by activating DJun and inactivating the ETS repressor Aop/Yan by phosphorylation. DJun and Aop regulate dpp expression in the most dorsal row of cells. Secreted Dpp then instructs more ventrally located cells to stretch. Our results provide a causal link between the DJNK and Dpp pathways during dorsal closure. Interestingly, in vertebrates, transforming growth factor-beta and c-Jun regulate collagenase gene expression during wound healing, a process that also involves the closing of an epithelial sheath.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila , Drosophila/enzimologia , Proteínas do Olho/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno , Proteínas Repressoras/fisiologia , Fator de Transcrição AP-1/fisiologia , Animais , Diferenciação Celular , Drosophila/embriologia , Drosophila/genética , Proteínas Quinases JNK Ativadas por Mitógeno , MAP Quinase Quinase 4 , Mutação , Células Fotorreceptoras de Invertebrados/embriologia , Proteínas Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-ets , Fatores de Transcrição/genética
17.
Mech Dev ; 64(1-2): 95-104, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9232600

RESUMO

In the developing eye of Drosophila the protein kinase D-Raf controls the specification of the R7 photoreceptor cells. We show that overexpression of wild-type D-Raf inhibits the formation of R7 cells in a dose-dependent manner. Conversely, overexpression of mutant D-Raf proteins in which the conserved S388 is replaced by A or by D promotes the formation of supernumerary R7 cells, indicating increased D-Raf activity in vivo. S388 in D-Raf corresponds to S259 in c-Raf; shown to be involved in binding of 14-3-3. We show that analogous substitutions of S259 in c-Raf prevent binding of 14-3-3 zeta to the amino terminus of c-Raf and cause a Ras-independent constitutively increased c-Raf kinase activity. Binding of 14-3-3 zeta to the second binding site at the carboxy terminal catalytic domain was unaffected by these mutations. These results suggest that the increased kinase activity of mutant D-Raf is caused by the selective loss of 14-3-3 binding to its amino terminus. Therefore, binding of 14-3-3 to the amino terminus of Raf appears to negatively regulate Raf kinase activity in vivo.


Assuntos
Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Olho/crescimento & desenvolvimento , Olho/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Tirosina 3-Mono-Oxigenase , Proteínas 14-3-3 , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Drosophila/genética , Olho/citologia , Microscopia Eletrônica de Varredura , Mutagênese Sítio-Dirigida , Células Fotorreceptoras de Invertebrados/citologia , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-raf , Transdução de Sinais
18.
EMBO J ; 16(8): 1961-9, 1997 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-9155022

RESUMO

The heat shock protein Hsp90 has been shown to associate with various cellular signalling proteins such as steroid hormone receptors, src-like kinases and the serine/threonine kinase Raf. While the interaction between steroid hormone receptors and Hsp90 appears to be essential for ligand binding and activation of the receptors, the role of Hsp90 in Raf activation is less clear. We have identified mutations in the hsp83 gene, the Drosophila homologue of hsp90, in a search for dominant mutations that attenuate signalling from Raf in the developing eye. The mutations result in single amino acid substitutions in the Hsp83 protein and cause a dominant-negative effect on the function of the wild-type protein. We show that both wild-type and mutant forms of Hsp83 bind to the activated Drosophila Raf but the mutant Hsp83 protein causes a reduction in the kinase activity of Raf. Our results indicate that Hsp83 is essential for Raf function in vivo.


Assuntos
Drosophila/fisiologia , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Análise Mutacional de DNA , Olho/crescimento & desenvolvimento , Olho/ultraestrutura , Genes Dominantes/genética , Genes de Insetos/genética , Teste de Complementação Genética , Proteínas de Choque Térmico HSP90/genética , Dados de Sequência Molecular , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Células Fotorreceptoras de Invertebrados/ultraestrutura , Mutação Puntual , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-raf , Supressão Genética
19.
Genes Dev ; 11(23): 3254-64, 1997 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-9389656

RESUMO

Patterning of the compound eye begins at the posterior edge of the eye imaginal disc and progresses anteriorly toward the disc margin. The advancing front of ommatidial differentiation is marked by the morphogenetic furrow (MF). Here we show by clonal analysis that Hedgehog (Hh), secreted from two distinct populations of cells has two distinct functions: It was well documented that Hh expression in the differentiating photoreceptor cells drives the morphogenetic furrow. Now we show that, in addition, Hh, secreted from cells at the posterior disc margin, is absolutely required for the initiation of patterning and predisposes ommatidial precursor cells to enter ommatidial assembly later. These two functions of Hh in eye patterning are similar to the biphasic requirement for Sonic Hh in patterning of the ventral neural tube in vertebrates. We show further that Hh induces ommatidial development in the absence of its secondary signals Wingless (Wg) and Dpp and that the primary function of Dpp in MF initiation is the repression of wg, which prevents ommatidial differentiation. Our results show that the regulatory relationships between Hh, Dpp, and Wg in the eye are similar to those found in other imaginal discs such as the leg disc despite obvious differences in their modes of development.


Assuntos
Proteínas de Drosophila , Drosophila/crescimento & desenvolvimento , Proteínas de Insetos/fisiologia , Células Fotorreceptoras de Invertebrados/crescimento & desenvolvimento , Animais , Diferenciação Celular , Drosophila/genética , Drosophila/fisiologia , Expressão Gênica , Proteínas Hedgehog , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Morfogênese , Células Fotorreceptoras de Invertebrados/fisiologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Ratos , Receptores de Superfície Celular , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Retina/crescimento & desenvolvimento , Proteína Wnt1
20.
Genetics ; 142(1): 163-71, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8770593

RESUMO

The R7 fate is specified during Drosophila eye development by an inductive signal transduced intracellularly via the Raf kinase. We have performed a genetic screen for dominant mutations that alter the efficiency with which cells respond to a constitutively activated Raf kinase. Such mutations may affect genes involved in signal transduction downstream of Raf. We have isolated 44 mutations that define eight genes. One of these encodes a mitogen-activated protein kinase homologue: another is a putative target gene of this signaling pathway. We present the results of this screen in detail, as well as a preliminary genetic analysis of the six loci still to be characterized molecularly.


Assuntos
Drosophila/crescimento & desenvolvimento , Drosophila/genética , Olho/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Alelos , Animais , Mapeamento Cromossômico , Drosophila/enzimologia , Olho/ultraestrutura , Feminino , Genes de Insetos , Teste de Complementação Genética , Homozigoto , Masculino , Microscopia Eletrônica de Varredura , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-raf , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA