Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(5): 2347-2360, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113032

RESUMO

This article presents bioconjugates combining nanoparticles (AGuIX) with nanobodies (VHH) targeting Programmed Death-Ligand 1 (PD-L1, A12 VHH) and Cluster of Differentiation 47 (CD47, A4 VHH) for active tumor targeting. AGuIX nanoparticles offer theranostic capabilities and an efficient biodistribution/pharmacokinetic profile (BD/PK), while VHH's reduced size (15 kDa) allows efficient tumor penetration. Site-selective sortagging and click chemistry were compared for bioconjugation. While both methods yielded bioconjugates with similar functionality, click chemistry demonstrated higher yield and could be used for the conjugation of various VHH. The specific targeting of AGuIX@VHH has been demonstrated in both in vitro and ex vivo settings, paving the way for combined targeted immunotherapies, radiotherapy, and cancer imaging.


Assuntos
Gadolínio , Nanopartículas , Neoplasias , Humanos , Distribuição Tecidual , Medicina de Precisão , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
2.
Theranostics ; 13(14): 4711-4729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771768

RESUMO

Background: The introduction of magnetic resonance (MR)-guided radiation treatment planning has opened a new space for theranostic nanoparticles to reduce acute toxicity while improving local control. In this work, second-generation AGuIX® nanoparticles (AGuIX-Bi) are synthesized and validated. AGuIX-Bi are shown to maintain MR positive contrast while further amplifying the radiation dose by the replacement of some Gd3+ cations with higher Z Bi3+. These next-generation nanoparticles are based on the AGuIX® platform, which is currently being evaluated in multiple Phase II clinical trials in combination with radiotherapy. Methods: In this clinically scalable methodology, AGuIX® is used as an initial chelation platform to exchange Gd3+ for Bi3+. AGuIX-Bi nanoparticles are synthesized with three ratios of Gd/Bi, each maintaining MR contrast while further amplifying radiation dose relative to Bi3+. Safety, efficacy, and theranostic potential of the nanoparticles were evaluated in vitro and in vivo in a human non-small cell lung cancer model. Results: We demonstrated that increasing Bi3+ in the nanoparticles is associated with more DNA damage and improves in vivo efficacy with a statistically significant delay in tumor growth and 33% complete regression for the largest Bi/Gd ratio tested. The addition of Bi3+ by our synthetic method leads to nanoparticles that present slightly altered pharmacokinetics and lengthening of the period of high tumor accumulation with no observed evidence of toxicity. Conclusions: We confirmed the safety and enhanced efficacy of AGuIX-Bi with radiation therapy at the selected ratio of 30Gd/70Bi. These results provide crucial evidence towards patient translation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Humanos , Medicina de Precisão , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Doses de Radiação , Nanomedicina Teranóstica/métodos
3.
Arch Toxicol ; 95(3): 1023-1037, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33426622

RESUMO

Uranium is widely spread in the environment due to its natural and anthropogenic occurrences, hence the importance of understanding its impact on human health. The skeleton is the main site of long-term accumulation of this actinide. However, interactions of this metal with biological processes involving the mineralized extracellular matrix and bone cells are still poorly understood. To get a better insight into these interactions, we developed new biomimetic bone matrices containing low doses of natural uranium (up to 0.85 µg of uranium per cm2). These models were characterized by spectroscopic and microscopic approaches before being used as a support for the culture and differentiation of pre-osteoclastic cells. In doing so, we demonstrate that uranium can exert opposite effects on osteoclast resorption depending on its concentration in the bone microenvironment. Our results also provide evidence for the first time that resorption contributes to the remobilization of bone matrix-bound uranium. In agreement with this, we identified, by HRTEM, uranium phosphate internalized in vesicles of resorbing osteoclasts. Thanks to the biomimetic matrices we developed, this study highlights the complex mutual effects between osteoclasts and uranium. This demonstrates the relevance of these 3D models to further study the cellular mechanisms at play in response to uranium storage in bone tissue, and thus better understand the impact of environmental exposure to uranium on human bone health.


Assuntos
Matriz Óssea/efeitos dos fármacos , Modelos Biológicos , Osteoclastos/efeitos dos fármacos , Urânio/metabolismo , Animais , Biomimética , Matriz Óssea/metabolismo , Reabsorção Óssea/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Osteoclastos/metabolismo , Células RAW 264.7 , Distribuição Tecidual , Urânio/administração & dosagem
4.
Anal Chem ; 93(3): 1254-1259, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33372768

RESUMO

During past decade, special focus has been laid on ultrasmall nanoparticles for nanomedicine and eventual clinical translation. To achieve such translation, a lot of challenges have to be solved. Among them, size determination is a particularly tricky one. In this aim, we have developed a simple hyphenation between Taylor dispersion analysis and inductively coupled plasma-mass spectrometry (ICP-MS). This method was proven to allow the determination of the hydrodynamic radius of metal-containing nanoparticles, even for sizes under 5 nm, with a relative standard deviation below 10% (with a 95% confidence interval) and at low concentrations. Moreover, its specificity provides the opportunity to perform measurements in complex biological media. This was applied to the characterization of an ultrasmall gadolinium-containing nanoparticle used as a theranostic agent in cancer diseases. Hydrodynamic radii measured in urine, cerebrospinal fluid, and undiluted serum demonstrated the absence of interaction between the particle and biological compounds such as proteins.


Assuntos
Gadolínio/análise , Nanopartículas Metálicas/análise , Espectrometria de Massas , Tamanho da Partícula , Propriedades de Superfície , Nanomedicina Teranóstica
5.
Nat Commun ; 8: 15300, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504266

RESUMO

Environmental cues profoundly modulate cell proliferation and cell elongation to inform and direct plant growth and development. External phosphate (Pi) limitation inhibits primary root growth in many plant species. However, the underlying Pi sensory mechanisms are unknown. Here we genetically uncouple two Pi sensing pathways in the root apex of Arabidopsis thaliana. First, the rapid inhibition of cell elongation in the transition zone is controlled by transcription factor STOP1, by its direct target, ALMT1, encoding a malate channel, and by ferroxidase LPR1, which together mediate Fe and peroxidase-dependent cell wall stiffening. Second, during the subsequent slow inhibition of cell proliferation in the apical meristem, which is mediated by LPR1-dependent, but largely STOP1-ALMT1-independent, Fe and callose accumulate in the stem cell niche, leading to meristem reduction. Our work uncovers STOP1 and ALMT1 as a signalling pathway of low Pi availability and exuded malate as an unexpected apoplastic inhibitor of root cell wall expansion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Crescimento Celular , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Malatos/metabolismo , Meristema/citologia , Meristema/genética , Meristema/metabolismo , Transportadores de Ânions Orgânicos/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Transdução de Sinais/genética , Fatores de Transcrição/genética
6.
PLoS One ; 11(6): e0157943, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27336163

RESUMO

In the search of new robust and environmental-friendly analytical methods able to answer quantitative issues in pharmacology, we explore liquid chromatography (LC) associated with elemental mass spectrometry (ICP-MS) to monitor peptides in such complex biological matrices. The novelty is to use mass spectrometry to replace radiolabelling and radioactivity measurements, which represent up-to now the gold standard to measure organic compound concentrations in life science. As a proof of concept, we choose the vasopressin (AVP)/V1A receptor system for model pharmacological assays. The capacity of ICP-MS to provide highly sensitive quantitation of metallic and hetero elements, whatever the sample medium, prompted us to investigate this technique in combination with appropriate labelling of the peptide of interest. Selenium, that is scarcely present in biological media, was selected as a good compromise between ICP-MS response, covalent tagging ability using conventional sulfur chemistry and peptide detection specificity. Applying selenium monitoring by elemental mass spectrometry in pharmacology is challenging due to the very high salt content and organic material complexity of the samples that produces polyatomic aggregates and thus potentially mass interferences with selenium detection. Hyphenation with a chromatographic separation was found compulsory. Noteworthy, we aimed to develop a straightforward quantitative protocol that can be performed in any laboratory equipped with a standard macrobore LC-ICP-MS system, in order to avoid time-consuming sample treatment or special implementation of instrumental set-up, while allowing efficient suppression of all mass interferences to reach the targeted sensitivity. Significantly, a quantification limit of 57 ng Se L-1 (72 femtomoles of injected Se) was achieved, the samples issued from the pharmacological assays being directly introduced into the LC-ICP-MS system. The established method was successfully validated and applied to the measurement of the vasopressin ligand affinity for its V1A receptor through the determination of the dissociation constant (Kd) which was compared to the one recorded with conventional radioactivity assays.


Assuntos
Espectrometria de Massas/métodos , Espectrometria de Massas/normas , Peptídeos/química , Farmacologia/métodos , Farmacologia/normas , Cromatografia Líquida , Humanos , Cinética , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Peptídeos/síntese química , Ligação Proteica , Selênio/química , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização por Electrospray , Vasopressinas/química
7.
Micron ; 35(1-2): 31-41, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15036285

RESUMO

Segonzacia mesatlantica (Crustacea; Decapoda; Brachyura) is the only endemic crab species known from the Mid-Atlantic Ridge (MAR) hydrothermal vents. Known from all explored sites in the Atlantic, its wide distribution makes this species a model to study physiological adaptation, and specifically respiratory strategies. Native haemocyanin (Hc) comprises four non-covalent associations in equilibrium formed by monomers, hexamers, dodecamers and octadecamers made up of approximately 75 kDa polypeptide chains. Four different amino acid chains are observed with a molecular mass ranging from 75,234 to 75,972 Da. Experiments carried-out under pressure suggested that the percentage of monomer increased in the haemolymph under hypoxic condition. We have also observed a shift of the proportion of the two dodecamer series, suggesting a rapid modification of the Hc phenotype between hypoxic and hyperoxic conditions. Native Hc possesses a high oxygen affinity ( P50 = 2.2 Torr at 15 degrees C and pH 7.5), a large Bohr effect (Deltalog P50 / DeltapH approximately -2.7) and a slightly reverse temperature effect (DeltaH = +17.19 kJ mol(-1). The composition of Segonzacia haemolymph is similar to that of other littoral species except for the large enrichment in free copper and zinc. As for other species from hydrothermal vent sites, Segonzacia haemolymph possesses a higher buffer capacity than littoral species. Moreover, species from the hydrothermal vent decapods from Pacific hydrothermal vent that encounter higher CO2 content in their environment have a higher buffer capacity than Atlantic vent species. The results presented are discussed in relation with the physico-chemical characteristics of the hydrothermal vent environment.


Assuntos
Braquiúros/química , Braquiúros/fisiologia , Hemocianinas/química , Adaptação Fisiológica , Animais , Hemocianinas/fisiologia , Hemolinfa/química , Estrutura Quaternária de Proteína , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA