Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 599(13): 3279-3293, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34101850

RESUMO

KEY POINTS: Inhibition of pancreatic ATP-sensitive K+ (KATP ) channels is the intended effect of oral sulphonylureas to increase insulin release in diabetes. However, pertinent to off-target effects of sulphonylurea medication, sex differences in cardiac KATP channel function exist, whereas potential sex differences in vascular KATP channel function remain unknown. In the present study, we assessed vascular KATP channel function (topical glibenclamide superfused onto fast-twitch oxidative skeletal muscle) supporting blood flow and interstitial O2 delivery-utilization matching ( PO2 is) during twitch contractions in male, female during pro-oestrus and ovariectomized female (F+OVX) rats. Glibenclamide decreased blood flow (convective O2 transport) and interstitial PO2 in male and female, but not F+OVX, rats. Compared to males, females also demonstrated impaired diffusive O2 transport and a faster fall in interstitial PO2 . Our demonstration, in rats, that sex differences in vascular KATP channel function exist support the tentative hypothesis that oral sulphonylureas may exacerbate exercise intolerance and morbidity, especially in premenopausal females. ABSTRACT: Vascular ATP-sensitive K+ (KATP ) channels support skeletal muscle blood flow ( Q̇m ), interstitial O2 delivery ( Q̇O2 )-utilization ( V̇O2 ) matching (i.e. interstitial-myocyte O2 flux driving pressure; PO2 is) and exercise tolerance. Potential sex differences in skeletal muscle vascular KATP channel function remain largely unexplored. We hypothesized that local skeletal muscle KATP channel inhibition via glibenclamide superfusion (5 mg kg-1 GLI; sulphonylurea diabetes medication) in anaesthetized female Sprague-Dawley rats, compared to males, would demonstrate greater reductions in contracting (1 Hz, 7 V, 180 s) fast-twitch oxidative mixed gastrocnemius (97% type IIA+IID/X+IIB) Q̇m (15 µm microspheres) and PO2 is (phosphorescence quenching), resulting from more compromised convective ( Q̇O2 ) and diffusive ( DO2  ) O2 conductances. Furthermore, these GLI-induced reductions in ovary-intact females measured during pro-oestrus would be diminished following ovariectomy (F+OVX). GLI similarly impaired mixed gastrocnemius V̇O2 in both males (↓28%) and females (↓33%, both P < 0.032) via reduced Q̇m (male: ↓31%, female: ↓35%, both P < 0.020), Q̇O2 (male: 5.6 ± 0.5 vs. 4.0 ± 0.5, female: 6.4 ± 1.1 vs. 4.2 ± 0.6 mL O2  min-1 100 g tissue-1 , P < 0.022) and the resulting PO2 is, with females also demonstrating a reduced DO2  (0.40 ± 0.07 vs. 0.30 ± 0.04 mL O2  min-1 100 g tissue-1 , P < 0.042) and a greater GLI-induced speeding of PO2 is fall (mean response time: Sex × Drug interaction, P = 0.026). Conversely, GLI did not impair the mixed gastrocnemius of F+OVX rats. Therefore, in patients taking sulphonylureas, these results support the potential for impaired vascular KATP channel function to compromise muscle Q̇m and therefore exercise tolerance. Such an effect, if present, would likely contribute to adverse cardiovascular events in premenopausal females more than males.


Assuntos
Contração Muscular , Caracteres Sexuais , Trifosfato de Adenosina/metabolismo , Animais , Feminino , Humanos , Masculino , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley
2.
J Physiol ; 598(21): 4843-4858, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32798233

RESUMO

KEY POINTS: Oral sulphonylureas, widely prescribed for diabetes, inhibit pancreatic ATP-sensitive K+ (KATP ) channels to increase insulin release. However, KATP channels are also located within vascular (endothelium and smooth muscle) and muscle (cardiac and skeletal) tissue. We evaluated left ventricular function at rest, maximal aerobic capacity ( V̇ O2 max) and submaximal exercise tolerance (i.e. speed-duration relationship) during treadmill running in rats, before and after systemic KATP channel inhibition via glibenclamide. Glibenclamide impaired critical speed proportionally more than V̇ O2 max but did not alter resting cardiac output. Vascular KATP channel function (topical glibenclamide superfused onto hindlimb skeletal muscle) resolved a decreased blood flow and interstitial PO2 during twitch contractions reflecting impaired O2 delivery-to-utilization matching. Our findings demonstrate that systemic KATP channel inhibition reduces V̇ O2 max and critical speed during treadmill running in rats due, in part, to impaired convective and diffusive O2 delivery, and thus V̇ O2 , especially within fast-twitch oxidative skeletal muscle. ABSTRACT: Vascular ATP-sensitive K+ (KATP ) channels support skeletal muscle blood flow and microvascular oxygen delivery-to-utilization matching during exercise. However, oral sulphonylurea treatment for diabetes inhibits pancreatic KATP channels to enhance insulin release. Herein we tested the hypotheses that: i) systemic KATP channel inhibition via glibenclamide (GLI; 10 mg kg-1 i.p.) would decrease cardiac output at rest (echocardiography), maximal aerobic capacity ( V̇ O2 max) and the speed-duration relationship (i.e. lower critical speed (CS)) during treadmill running; and ii) local KATP channel inhibition (5 mg kg-1 GLI superfusion) would decrease blood flow (15 µm microspheres), interstitial space oxygen pressures (PO2 is; phosphorescence quenching) and convective and diffusive O2 transport ( Q̇ O2 and DO2 , respectively; Fick Principle and Law of Diffusion) in contracting fast-twitch oxidative mixed gastrocnemius muscle (MG: 9% type I+IIa fibres). At rest, GLI slowed left ventricular relaxation (2.11 ± 0.59 vs. 1.70 ± 0.23 cm s-1 ) and decreased heart rate (321 ± 23 vs. 304 ± 22 bpm, both P < 0.05) while cardiac output remained unaltered (219 ± 64 vs. 197 ± 39 ml min-1 , P > 0.05). During exercise, GLI reduced V̇ O2 max (71.5 ± 3.1 vs. 67.9 ± 4.8 ml kg-1 min-1 ) and CS (35.9 ± 2.4 vs. 31.9 ± 3.1 m min-1 , both P < 0.05). Local KATP channel inhibition decreased MG blood flow (52 ± 25 vs. 34 ± 13 ml min-1 100 g tissue-1 ) and PO2 isnadir (5.9 ± 0.9 vs. 4.7 ± 1.1 mmHg) during twitch contractions. Furthermore, MG V̇ O2 was reduced via impaired Q̇ O2 and DO2 (P < 0.05 for each). Collectively, these data support that vascular KATP channels help sustain submaximal exercise tolerance in healthy rats. For patients taking sulfonylureas, KATP channel inhibition may exacerbate exercise intolerance.


Assuntos
Tolerância ao Exercício , Contração Muscular , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley
3.
Respir Physiol Neurobiol ; 247: 140-145, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29037770

RESUMO

Chronic heart failure (CHF) results in a greater cost of breathing and necessitates an elevated diaphragm blood flow (BF). Dietary nitrate (NO3‾) supplementation lowers the cost of exercise. We hypothesized that dietary NO3‾ supplementation would attenuate the CHF-induced greater cost of breathing and thus the heightened diaphragm BF during exercise. CHF rats received either 5days of NO3‾-rich beetroot (BR) juice (CHF+BR, n=10) or a placebo (CHF, n=10). Respiratory muscle BFs (radiolabeled microspheres) were measured at rest and during submaximal exercise (20m/min, 5% grade). Infarcted left ventricular area and normalized lung weight were not significantly different between groups. During submaximal exercise, diaphragm BF was markedly lower for CHF+BR than CHF (CHF+BR: 195±28; CHF: 309±71mL/min/100g, p=0.04). The change in diaphragm BF from rest to exercise was less (p=0.047) for CHF+BR than CHF. These findings demonstrate that dietary NO3‾ supplementation reduces the elevated diaphragm BF during exercise in CHF rats thus providing additional support for this therapeutic intervention in CHF.


Assuntos
Diafragma/fisiopatologia , Insuficiência Cardíaca/dietoterapia , Insuficiência Cardíaca/fisiopatologia , Atividade Motora/fisiologia , Nitratos/administração & dosagem , Animais , Beta vulgaris , Doença Crônica , Diafragma/irrigação sanguínea , Modelos Animais de Doenças , Sucos de Frutas e Vegetais , Masculino , Consumo de Oxigênio/fisiologia , Distribuição Aleatória , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/fisiologia
4.
Curr Stem Cell Res Ther ; 8(1): 46-59, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23270633

RESUMO

The therapeutic effect of mesenchymal stromal cells (MSCs) following myocardial infarction (MI) is small. This may be due to differences in cellular sources and donor age, route of administration, in vitro cellular manipulations and the short time course of follow up in many animal studies. Here, we compared MSCs from two different sources (adult bone marrow or Wharton's jelly from umbilical cord) for their long-term therapeutic effect following MI in a rat model to evaluate the effect of donor age. MSCs (or control infusions) were given intravenously 24-48 hr after myocardial ischemia (MI) induced by coronary artery ligation. Cardiac function was assessed by ultrasound at time points starting from before MSC infusion through 68 weeks after MI. A significant improvement in ejection fraction was seen in animals that received MSCs in time points 25 to 31 wks after treatment (p < 0.01). These results support previous work that show that MSCs can cause improvement in cardiac function and extend that work by showing that the beneficial effects are durable. To investigate MSCs' cardiac differentiation potential, Wharton's jelly MSCs were co-cultured with fetal or adult bone-derived marrow MSCs. When Wharton's jelly MSCs were co-cultured with fetal MSCs, and not with adult MSCs, myotube structures were observed in two-three days and spontaneous contractions (beating) cells were observed in fiveseven days. The beating structures formed a functional syncytium indicated by coordinated contractions (beating) of independent nodes. Taken together, these results suggest that MSCs given 24-48 hr after MI have a significant and durable beneficial effect more than 25 weeks after MI and that MSC treatment can home to damaged tissue and improve heart function after intravenous infusion 24-48 hrs after MI, and that WJCs may be a useful source for off-the-shelf cellular therapy for MI.


Assuntos
Medula Óssea , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/prevenção & controle , Geleia de Wharton/citologia , Animais , Diferenciação Celular , Separação Celular , Células Cultivadas , Técnicas de Cocultura , Feminino , Feto , Infarto do Miocárdio/patologia , Ratos
5.
J Appl Physiol (1985) ; 94(6): 2225-36, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12562669

RESUMO

The mechanisms responsible for the decrements in exercise performance in chronic heart failure (CHF) remain poorly understood, but it has been suggested that sarcolemmal alterations could contribute to the early onset of muscular fatigue. Previously, our laboratory demonstrated that the maximal number of ouabain binding sites (B(max)) is reduced in the skeletal muscle of rats with CHF (Musch TI, Wolfram S, Hageman KS, and Pickar JG. J Appl Physiol 92: 2326-2334, 2002). These reductions may coincide with changes in the Na(+)-K(+)-ATPase isoform (alpha and beta) expression. In the present study, we tested the hypothesis that reductions in B(max) would coincide with alterations in the alpha- and beta-subunit expression of the sarcolemmal Na(+)-K(+)-ATPase of rats with CHF. Moreover, we tested the hypothesis that exercise training would increase B(max) along with producing significant changes in alpha- and beta-subunit expression. Rats underwent a sham operation (sham; n = 10) or a surgically induced myocardial infarction followed by random assignment to either a control (MI; n = 16) or exercise training group (MI-T; n = 16). The MI-T rats performed exercise training (ET) for 6-8 wk. Hemodynamic indexes demonstrated that MI and MI-T rats suffered from severe left ventricular dysfunction and congestive CHF. Maximal oxygen uptake (Vo(2 max)) and endurance capacity (run time to fatigue) were reduced in MI rats compared with sham. B(max) in the soleus and plantaris muscles and the expression of the alpha(2)-isoform of the Na(+)-K(+)-ATPase in the red portion of the gastrocnemius (gastrocnemius(red)) muscle were reduced in MI rats. After ET, Vo(2 max) and run time to fatigue were increased in the MI-T group of rats. This coincided with increases in soleus and plantaris B(max) and the expression of the alpha(2)-isoform in the gastrocnemius(red) muscle. In addition, the expression of the beta(2)-isoform of the gastrocnemius(red) muscle was increased in the MI-T rats compared with their sedentary counterparts. This study demonstrates that CHF-induced alterations in skeletal muscle Na(+)-K(+)-ATPase, including B(max) and isoform expression, can be partially reversed by ET.


Assuntos
Insuficiência Cardíaca/enzimologia , Músculo Esquelético/enzimologia , Condicionamento Físico Animal/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Sítios de Ligação , Doença Crônica , Feminino , Isoenzimas/metabolismo , Ouabaína/metabolismo , Consumo de Oxigênio , Resistência Física , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA