Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38792115

RESUMO

The electron-electron, or zero-field interaction (ZFI) in the electron paramagnetic resonance (EPR) of high-spin transition ions in metalloproteins and coordination complexes, is commonly described by a simple spin Hamiltonian that is second-order in the spin S: H=D[Sz2-SS+1/3+E(Sx2-Sy2). Symmetry considerations, however, allow for fourth-order terms when S ≥ 2. In metalloprotein EPR studies, these terms have rarely been explored. Metal ions can cluster via non-metal bridges, as, for example, in iron-sulfur clusters, in which exchange interaction can result in higher system spin, and this would allow for sixth- and higher-order ZFI terms. For metalloproteins, these have thus far been completely ignored. Single-molecule magnets (SMMs) are multi-metal ion high spin complexes, in which the ZFI usually has a negative sign, thus affording a ground state level pair with maximal spin quantum number mS = ±S, giving rise to unusual magnetic properties at low temperatures. The description of EPR from SMMs is commonly cast in terms of the 'giant-spin model', which assumes a magnetically isolated system spin, and in which fourth-order, and recently, even sixth-order ZFI terms have been found to be required. A special version of the giant-spin model, adopted for scaling-up to system spins of order S ≈ 103-104, has been applied to the ubiquitous iron-storage protein ferritin, which has an internal core containing Fe3+ ions whose individual high spins couple in a way to create a superparamagnet at ambient temperature with very high system spin reminiscent to that of ferromagnetic nanoparticles. This scaled giant-spin model is critically evaluated; limitations and future possibilities are explicitly formulated.

3.
Metallomics ; 14(9)2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36002017

RESUMO

Analysis of citation networks in biomedical research has indicated that belief in a specific scientific claim can gain unfounded authority through citation bias (systematic ignoring of papers that contain content conflicting with a claim), amplification (citation to papers that don't contain primary data), and invention (citing content but claiming it has a different meaning). There is no a priori reason to expect that citation distortion is limited to particular fields of science. This Pespective presents a case study of the literature on maximum iron loading of the ferritin protein to illustrate that the field of metallomics is no exception to the rule that citation distortion is a widespread phenomenon.


Assuntos
Pesquisa Biomédica , Ferritinas , Ferro
4.
Nat Chem ; 14(3): 253-266, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35165425

RESUMO

A virus hijacks host cellular machineries and metabolites in order to reproduce. In response, the innate immune system activates different processes to fight back. Although many aspects of these processes have been well investigated, the key roles played by iron-sulfur [FeS] clusters, which are among the oldest classes of bio-inorganic cofactors, have barely been considered. Here we discuss how several [FeS] cluster-containing proteins activate, support and modulate the innate immune response to restrict viral infections, and how some of these proteins simultaneously support the replication of viruses. We also propose models of function of some proteins in the innate immune response and argue that [FeS] clusters in many of these proteins act as biological 'fuses' to control the response. We hope this overview helps to inspire future research in the emerging field of bio-inorganic virology/immunology and that such studies may reveal new molecular insight into the links between viral infections and diseases like cancer and neurodegeneration.


Assuntos
Proteínas Ferro-Enxofre , Catálise , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Enxofre , Replicação Viral
5.
Biomolecules ; 9(6)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159273

RESUMO

The cupin-type phosphoglucose isomerase (PfPGI) from the hyperthermophilic archaeon Pyrococcus furiosus catalyzes the reversible isomerization of glucose-6-phosphate to fructose-6-phosphate. We investigated PfPGI using protein-engineering bioinformatics tools to select functionally-important residues based on correlated mutation analyses. A pair of amino acids in the periphery of PfPGI was found to be the dominant co-evolving mutation. The position of these selected residues was found to be non-obvious to conventional protein engineering methods. We designed a small smart library of variants by substituting the co-evolved pair and screened their biochemical activity, which revealed their functional relevance. Four mutants were further selected from the library for purification, measurement of their specific activity, crystal structure determination, and metal cofactor coordination analysis. Though the mutant structures and metal cofactor coordination were strikingly similar, variations in their activity correlated with their fine-tuned dynamics and solvent access regulation. Alternative, small smart libraries for enzyme optimization are suggested by our approach, which is able to identify non-obvious yet beneficial mutations.


Assuntos
Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Pyrococcus furiosus/enzimologia , Temperatura , Inibidores Enzimáticos/farmacologia , Glucose-6-Fosfato Isomerase/antagonistas & inibidores , Glucose-6-Fosfato Isomerase/química , Manganês/metabolismo , Simulação de Dinâmica Molecular , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Conformação Proteica , Engenharia de Proteínas , Água/metabolismo
6.
J Biol Inorg Chem ; 23(4): 623-634, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29468426

RESUMO

From the very first discovery of biological iron-sulfur clusters with EPR, the spectroscopy has been used to study not only purified proteins but also complex systems such as respiratory complexes, membrane particles and, later, whole cells. In recent times, the emphasis of iron-sulfur biochemistry has moved from characterization of individual proteins to the systems biology of iron-sulfur biosynthesis, regulation, degradation, and implications for human health. Although this move would suggest a blossoming of System-EPR as a specific, non-invasive monitor of Fe/S (dys)homeostasis in whole cells, a review of the literature reveals limited success possibly due to technical difficulties in adherence to EPR spectroscopic and biochemical standards. In an attempt to boost application of System-EPR the required boundary conditions and their practical applications are explicitly and comprehensively formulated.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Animais , Humanos
7.
Mol Biosyst ; 12(12): 3576-3588, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27722502

RESUMO

Ferritin is a nanocage protein made of 24 subunits. Its major role is to manage intracellular concentrations of free Fe(ii) and Fe(iii) ions, which is pivotal for iron homeostasis across all domains of life. This function of the protein is regulated by a conserved di-iron catalytic center and has been the subject of extensive studies over the past 50 years. Yet, it has not been fully understood how Fe(ii) is oxidized in the di-iron catalytic center and it is not known why eukaryotic and microbial ferritins oxidize Fe(ii) with different kinetics. In an attempt to obtain a new insight into the mechanism of Fe(ii) oxidation and understand the origin of the observed differences in the catalysis of Fe(ii) oxidation among ferritins we studied and compared the mechanism of Fe(ii) oxidation in the eukaryotic human H-type ferritin (HuHF) and the archaeal ferritin from Pyrococcus furiosus (PfFtn). The results show that the spectroscopic characteristics of the intermediate of Fe(ii) oxidation and the Fe(iii)-products are the same in these two ferritins supporting the proposal of unity in the mechanism of Fe(ii) oxidation among eukaryotic and microbial ferritins. Moreover, we observed that a site in the di-iron catalytic center controls the distribution of Fe(ii) among subunits of HuHF and PfFtn differently. This observation explains the reported differences between HuHF and PfFtn in the kinetics of Fe(ii) oxidation and the amount of O2 consumed per Fe(ii) oxidized. These results provide a fresh understanding of the mechanism of Fe(ii) oxidation by ferritins.


Assuntos
Domínio Catalítico , Ferritinas/química , Compostos Ferrosos/química , Oxirredução , Sítios de Ligação , Catálise , Ceruloplasmina/química , Humanos , Cinética , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Pyrococcus furiosus/metabolismo , Análise Espectral
9.
Nat Chem Biol ; 8(11): 941-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23001032

RESUMO

A conserved iron-binding site, the ferroxidase center, regulates the vital iron storage role of the ubiquitous protein ferritin in iron metabolism. It is commonly thought that two Fe(II) simultaneously bind the ferroxidase center and that the oxidized Fe(III)-O(H)-Fe(III) product spontaneously enters the cavity of ferritin as a unit. In contrast, in some bacterioferritins and in archaeal ferritins a persistent di-iron prosthetic group in this center is believed to mediate catalysis of core formation. Using a combination of binding experiments and isotopically labeled (57)Fe(II), we studied two systems in comparison: the ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus (PfFtn) and the eukaryotic human H ferritin (HuHF). The results do not support either of the two paradigmatic models; instead they suggest a unifying mechanism in which the Fe(III)-O-Fe(III) unit resides in the ferroxidase center until it is sequentially displaced by Fe(II).


Assuntos
Biocatálise , Ceruloplasmina/metabolismo , Compostos Férricos/metabolismo , Ferritinas/metabolismo , Compostos Ferrosos/metabolismo , Ferro/metabolismo , Sítios de Ligação , Ceruloplasmina/química , Compostos Férricos/química , Ferritinas/química , Compostos Ferrosos/química , Ferro/química , Modelos Moleculares
10.
PLoS One ; 7(8): e40287, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916096

RESUMO

The ß-amyloid precursor protein (APP), which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II) binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III) product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II) just as in ferritin. We measured the ferroxidase activity indirectly (i) by the incorporation of the Fe(III) product of the ferroxidase reaction into transferrin and directly (ii) by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II) oxidation by molecular oxygen. Zn(II) binds to transferrin and diminishes its Fe(III) incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Ferro/metabolismo , Peptídeos/metabolismo , Sítios de Ligação , Biocatálise , Humanos , Oxirredução , Oxigênio/metabolismo , Termodinâmica , Zinco/metabolismo
11.
J Biol Inorg Chem ; 17(6): 975-85, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22739810

RESUMO

Storage of iron in a nontoxic and bioavailable form is essential for many forms of life. Three subfamilies of the ferritin-like superfamily, namely, ferritin, bacterioferritin, and Dps (DNA-binding proteins from starved cells), are able to store iron. Although the function of these iron-storage proteins is constitutive to many organisms to sustain life, the genome of some organisms appears not to encode any of these proteins. In an attempt to identify new iron-storage systems, we have found and characterized a new member of the ferritin-like superfamily of proteins, which unlike the multimeric storage system of ferritin, bacterioferritin, and Dps is monomeric in the absence of iron. Monomers catalyze oxidation of Fe(II) and they store the Fe(III) product as they assemble to form structures comparable to those of 24-meric ferritin. We propose that this mechanism is an alternative method of iron storage by the ferritin-like superfamily of proteins in organisms that lack the regular preassociated 24-meric/12-meric ferritins.


Assuntos
Ferritinas/metabolismo , Pyrococcus furiosus/metabolismo , Sequência de Aminoácidos , Ferritinas/química , Ferritinas/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Pyrococcus furiosus/genética
12.
J Biol Inorg Chem ; 15(8): 1243-53, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20582559

RESUMO

Ferritin is a ubiquitous iron-storage protein that has 24 subunits. Each subunit of ferritins that exhibit high Fe(II) oxidation rates has a diiron binding site, the so-called ferroxidase center (FC). The role of the FC appears to be essential for the iron-oxidation catalysis of ferritins. Studies of the iron oxidation by mammalian, bacterial, and archaeal ferritin have indicated different mechanisms are operative for Fe(II) oxidation, and for inhibition of the Fe(II) oxidation by Zn(II). These differences are presumably related to the variations in the amino acid residues of the FC and/or transport channels. We have used a combination of UV-vis spectroscopy, fluorescence spectroscopy, and isothermal titration calorimetry to study the inhibiting action of Zn(II) ions on the iron-oxidation process by apoferritin and by ferritin aerobically preloaded with 48 Fe(II) per 24-meric protein, and to study a possible role of phosphate in initial iron mineralization by Pyrococcus furiosus ferritin (PfFtn). Although the empty FC can accommodate two zinc ions, binding of one zinc ion to the FC suffices to essentially abolish iron-oxidation activity. Zn(II) no longer binds to the FC nor does it inhibit iron core formation once the FC is filled with two Fe(III). Phosphate and vanadate facilitate iron oxidation only after formation of a stable FC, whereupon they become an integral part of the core. These results corroborate our previous proposal that the FC in PfFtn is a stable prosthetic group, and they suggest that its formation is essential for iron-oxidation catalysis by the protein.


Assuntos
Ferritinas/química , Ferro/química , Pyrococcus furiosus/química , Sítios de Ligação , Calorimetria , Catálise , Ferritinas/metabolismo , Ferro/metabolismo , Cinética , Modelos Moleculares , Oxirredução , Fosfatos/química , Fosfatos/metabolismo , Pyrococcus furiosus/metabolismo , Fatores de Tempo , Zinco/química , Zinco/metabolismo
13.
J Am Chem Soc ; 132(28): 9850-6, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20578740

RESUMO

The Birch reduction of aromatic rings to cyclohexadiene compounds is widely used in chemical synthesis and requires solvated electrons, the most potent reductants known in organic chemistry. Benzoyl-coenzyme A (CoA) reductases (BCR) are key enzymes in the anaerobic bacterial degradation of aromatic compounds and catalyze an analogous reaction under physiological conditions. Class I BCRs are FeS enzymes and couple the reductive dearomatization of benzoyl-CoA to cyclohexa-1,5-diene-1-carboxyl-CoA (dienoyl-CoA) to a stoichiometric ATP hydrolysis. Here, we report on a tungsten-containing class II BCR from Geobacter metallireducens that catalyzed the fully reversible, ATP-independent dearomatization of benzoyl-CoA to dienoyl-CoA. BCR additionally catalyzed the disproportionation of dienoyl-CoA to benzoyl-CoA/monoenoyl-CoA and the four- and six-electron reduction of benzoyl-CoA in the presence of a reduced low-potential bridged 2,2'-bipyridyl redox dye. Reversible redox titration experiments in the presence of this redox dye revealed a midpoint potential of E(0)' = -622 mV for the benzoyl-CoA/dienoyl-CoA couple, which is far below the values of other known reversible substrate/product redox couples in enzymology. This work demonstrates the efficiency of reversible metalloenzyme catalysis, which in chemical synthesis can only be achieved under essentially irreversible conditions.


Assuntos
Enzimas/metabolismo , Trifosfato de Adenosina/metabolismo , Catálise , Hidrólise , Oxirredução , Espectrofotometria Ultravioleta
14.
J Biol Inorg Chem ; 14(8): 1265-74, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19623480

RESUMO

The hollow sphere-shaped 24-meric ferritin can store large amounts of iron as a ferrihydrite-like mineral core. In all subunits of homomeric ferritins and in catalytically active subunits of heteromeric ferritins a diiron binding site is found that is commonly addressed as the ferroxidase center (FC). The FC is involved in the catalytic Fe(II) oxidation by the protein; however, structural differences among different ferritins may be linked to different mechanisms of iron oxidation. Non-heme ferritins are generally believed to operate by the so-called substrate FC model in which the FC cycles by filling with Fe(II), oxidizing the iron, and donating labile Fe(III)-O-Fe(III) units to the cavity. In contrast, the heme-containing bacterial ferritin from Escherichia coli has been proposed to carry a stable FC that indirectly catalyzes Fe(II) oxidation by electron transfer from a core that oxidizes Fe(II). Here, we put forth yet another mechanism for the non-heme archaeal 24-meric ferritin from Pyrococcus furiosus in which a stable iron-containing FC acts as a catalytic center for the oxidation of Fe(II), which is subsequently transferred to a core that is not involved in Fe(II)-oxidation catalysis. The proposal is based on optical spectroscopy and steady-state kinetic measurements of iron oxidation and dioxygen consumption by apoferritin and by ferritin preloaded with different amounts of iron. Oxidation of the first 48 Fe(II) added to apoferritin is spectrally and kinetically different from subsequent iron oxidation and this is interpreted to reflect FC building followed by FC-catalyzed core formation.


Assuntos
Proteínas Arqueais/química , Ferritinas/química , Ferro/química , Pyrococcus furiosus/química , Animais , Proteínas Arqueais/metabolismo , Bovinos , Ferritinas/metabolismo , Humanos , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Pyrococcus furiosus/metabolismo
15.
Dalton Trans ; (15): 2837-42, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19333508

RESUMO

The electrocatalytic iron release from P. furiosus ferritin upon reduction with a series of electron mediators was studied. The observed iron release rate as a function of mediator midpoint potentials is described by a two-step model, in which electron transfer from the mediator to ferritin is rate limiting at low driving force, and the protein's overall catalytic rate of k(cat)= 701 electrons per s is limiting at high driving force (low mediator potentials). The upper limit of the mediator potential at which the reductive iron release activity of P. furiosus ferritin has been observed in the electrochemical cell is -47 mV vs. SHE.


Assuntos
Proteínas Arqueais/química , Ferritinas/química , Ferro/química , Pyrococcus furiosus , Proteínas Arqueais/metabolismo , Biocatálise , Ceruloplasmina/química , Ceruloplasmina/metabolismo , Corantes/química , Condutividade Elétrica , Eletroquímica , Eletrodos , Transporte de Elétrons , Ferritinas/metabolismo , Ferro/metabolismo , Cinética , Modelos Moleculares , Conformação Proteica
16.
J Biol Inorg Chem ; 14(5): 703-10, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19241093

RESUMO

Pyrococcus furiosus hybrid cluster protein (HCP) was expressed in Escherichia coli, purified, and characterized. This is the first archaeal and thermostable HCP to be isolated. Compared with the protein sequences of previously characterized HCPs from mesophiles, the protein sequence of P. furiosus HCP exhibits a deletion of approximately 13 kDa as a single amino acid stretch just after the N-terminal cysteine motif, characteristic for class-III HCPs from (hyper)thermophilic archaea and bacteria. The protein was expressed as a thermostable, soluble homodimeric protein. Hydroxylamine reductase activity of P. furiosus HCP showed a K(m) value of 0.40 mM and a k(cat) value of 3.8 s(-1) at 70 degrees C and pH 9.0. Electron paramagnetic resonance spectroscopy showed evidence for the presence of a spin-admixed, S = 3/2 [4Fe-4S](+) cubane cluster and of the hybrid cluster. The cubane cluster of P. furiosus HCP is presumably coordinated by a CXXC-X(7)-C-X(5)-C motif close to the N-terminus, which is similar to the CXXC-X(8)-C-X(5)-C motif of the Desulfovibrio desulfuricans and Desulfovibrio vulgaris HCPs. Amino acid sequence alignment and homology modeling of P. furiosus HCP reveal that the deletion results in a loss of one of the two three-helix bundles of domain 1. Clearly the loss of one of the three-helix bundles of domain 1 does not diminish the hydroxylamine reduction activity and the incorporation of the iron-sulfur clusters.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Hidroxilamina/metabolismo , Pyrococcus furiosus/química , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Espectroscopia de Ressonância de Spin Eletrônica , Estabilidade Enzimática , Escherichia coli/genética , Expressão Gênica , Genes Arqueais , Ferro/química , Ferro/metabolismo , Modelos Moleculares , Oxirredução , Estrutura Terciária de Proteína , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Homologia Estrutural de Proteína , Enxofre/química , Enxofre/metabolismo , Temperatura
17.
J Biol Inorg Chem ; 13(1): 75-84, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17899221

RESUMO

Formaldehyde ferredoxin oxidoreductase from Pyrococcus furiosus is a homotetrameric protein with one tungstodipterin and one [4Fe-4S] cubane per 69-kDa subunit. The enzyme kinetics have been studied under steady-state conditions at 80 degrees C and pre-steady state conditions at 50 degrees C, in the latter case via monitoring of the relatively weak (epsilon approximately 2 mM(-1) cm(-1)) optical spectrum of the tungsten cofactor. The steady-state data are consistent with a substrate substituted-enzyme mechanism for three substrates (formaldehyde plus two ferredoxin molecules). The KM value for free formaldehyde (21 microM) with ferredoxin as an electron acceptor is approximately 3 times lower than the value measured when benzyl viologen is used as an acceptor. The KM of ferredoxin (14 microM) is an order of magnitude less than previously reported values. An explanation for this discrepancy may be the fact that high concentrations of substrate are inhibitory and denaturing to the enzyme. Pre-steady-state difference spectra reveal peak shifts and a lack of isosbestic points, an indication that several processes happen in the first seconds of the reaction. Two fast processes (kobs1 = 4.7 s(-1), kobs2 = 1.9 s(-1)) are interpreted as oxidation of the substrate followed by rearrangement of the active site. Alternatively, these processes could be the entry/binding of the substrate followed by its oxidation. The release of the product and the electron shuffling over the tungsten and iron-sulfur center in the absence of an external electron acceptor are slower (kobs3 = 6.10 x 10(-2 )s(-1), kobs4 = 2.18 x 10(-2 )s(-1)). On the basis of these results in combination with results from previous electron paramagnetic resonance studies an activation route plus catalytic redox cycle is proposed.


Assuntos
Aldeído Oxirredutases/metabolismo , Pyrococcus furiosus/enzimologia , Cinética , Espectrofotometria Ultravioleta , Especificidade por Substrato
18.
Biochemistry ; 47(3): 949-56, 2008 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18154309

RESUMO

Molybdenum (Mo) and tungsten (W) enzymes catalyze important redox reactions in the global carbon, nitrogen, and sulfur cycles. Except in nitrogenases both metals are exclusively associated with a unique metal-binding pterin (MPT) that is synthesized by a conserved multistep biosynthetic pathway, which ends with the insertion and thereby biological activation of the respective element. Although the biosynthesis of Mo cofactors has been intensively studied in various systems, the biogenesis of W-containing enzymes, mostly found in archaea, is poorly understood. Here, we describe the function of the Pyrococcus furiosus MoaB protein that is homologous to bacterial (such as MogA) and eukaryotic proteins (such as Cnx1) involved in the final steps of Mo cofactor synthesis. MoaB reconstituted the function of the homologous Escherichia coli MogA protein and catalyzes the adenylylation of MPT in a Mg2+ and ATP-dependent way. At room temperature reaction velocity was similar to that of the previously described plant Cnx1G domain, but it was increased up to 20-fold at 80 degrees C. Metal and nucleotide specificity for MPT adenylylation is well conserved between W and Mo cofactor synthesis. Thermostability of MoaB is believed to rely on its hexameric structure, whereas homologous mesophilic MogA-related proteins form trimers. Comparison of P. furiosus MoaB to E. coli MoaB and MogA revealed that only MogA is able to catalyze MPT adenylylation, whereas E. coli MoaB is inactive. In summary, MogA, Cnx1G, and MoaB proteins exhibit the same adenylyl transfer activity essential for metal insertion in W or Mo cofactor maturation.


Assuntos
Coenzimas/biossíntese , Metaloproteínas/biossíntese , Compostos Organometálicos/metabolismo , Pterinas/metabolismo , Pyrococcus furiosus/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Coenzimas/química , Coenzimas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Metaloproteínas/química , Metaloproteínas/metabolismo , Modelos Químicos , Dados de Sequência Molecular , Cofatores de Molibdênio , Nitrato Redutase/metabolismo , Ligação Proteica , Pteridinas/química , Pteridinas/metabolismo , Pterinas/química , Pyrococcus furiosus/genética , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Sulfurtransferases/química , Sulfurtransferases/metabolismo , Temperatura , Transfecção
19.
Inorg Chem ; 46(20): 8391-402, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17722878

RESUMO

The structural and spectroscopic characterization of mononuclear iron(III)-catecholato complexes of ligand L4 (methyl bis(1-methylimidazol-2-yl)(2-hydroxyphenyl)methyl ether, HL4) are described, which closely mimic the enzyme-substrate complex of the intradiol-cleaving catechol dioxygenases. The tridentate, tripodal monoanionic ligand framework of L4 incorporates one phenolato and two imidazole donor groups and thus well reproduces the His2Tyr endogenous donor set. In fact, regarding the structural features of [FeIII(L4)(tcc)(H2O)] (5.H2O, tcc = tetrachlorocatechol) in the solid state, the complex constitutes the closest structural model reported to date. The iron(III)-catecholato complexes mimic both the structural features of the active site and its spectroscopic characteristics. As part of its spectroscopic characterization, the electron paramagnetic resonance (EPR) spectra were successfully simulated using a simple model that accounts for D strain. The simulation procedure showed that the observed g = 4.3 line is an intrinsic part of the EPR envelope of the studied complexes and should not necessarily be attributed to a highly rhombic impurity. [FeIII(L4)(dtbc)(H2O)] (dtbc = 3,5-di-tert-butylcatechol) was studied with respect to its dioxygen reactivity, and oxidative cleavage of the substrate was observed. Intradiol- and extradiol-type cleavage products were found in roughly equal amounts. This shows that an accurate structural model of the first-coordination sphere of the active site is not sufficient for obtaining regioselectivity.


Assuntos
Catecol 1,2-Dioxigenase/metabolismo , Compostos Férricos/química , Catecol 1,2-Dioxigenase/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Hidrólise , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Espectrofotometria Ultravioleta
20.
J Am Chem Soc ; 129(8): 2275-86, 2007 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-17266307

RESUMO

Mononuclear iron(II)- and iron(III)-catecholato complexes with three members of a new 3,3-bis(1-alkylimidazol-2-yl)propionate ligand family have been synthesized as models of the active sites of the extradiol cleaving catechol dioxygenases. These enzymes are part of the superfamily of dioxygen-activating mononuclear non-heme iron enzymes that feature the so-called 2-His-1-carboxylate facial triad. The tridentate, tripodal, and monoanionic ligands used in this study include the biologically relevant carboxylate and imidazole donor groups. The structure of the mononuclear iron(III)-tetrachlorocatecholato complex [Fe(L3)(tcc)(H2O)] was determined by single-crystal X-ray diffraction, which shows a facial N,N,O capping mode of the ligand. For the first time, a mononuclear iron complex has been synthesized, which is facially capped by a ligand offering a tridentate Nim,Nim,Ocarb donor set, identical to the endogenous ligands of the 2-His-1-carboxylate facial triad. The iron complexes are five-coordinate in noncoordinating media, and the vacant coordination site is accessible for Lewis bases, e.g., pyridine, or small molecules such as dioxygen. The iron(II)-catecholato complexes react with dioxygen in two steps. In the first reaction the iron(II)-catecholato complexes rapidly convert to the corresponding iron(III) complexes, which then, in a second slow reaction, exhibit both oxidative cleavage and auto-oxidation of the substrate. Extradiol and intradiol cleavage are observed in noncoordinating solvents. The addition of a proton donor results in an increase in extradiol cleavage. The complexes add a new example to the small group of synthetic iron complexes capable of eliciting extradiol-type cleavage and provide more insight into the factors determining the regioselectivity of the enzymes.


Assuntos
Ácidos Carboxílicos/química , Catecóis/química , Dioxigenases/química , Compostos Férricos/química , Modelos Moleculares , Sítios de Ligação , Catálise , Cristalografia por Raios X , Compostos Férricos/síntese química , Ligação de Hidrogênio , Ligantes , Estrutura Molecular , Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA