Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 162(8): 1500-1509, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27283316

RESUMO

The LitR/CarH protein family transcriptional regulator is a new type of photoreceptor based on the function of adenosyl B12 (AdoB12) as a light-sensitive ligand. Here, we studied a semi-conserved histidine residue (His132) in the light-sensing (AdoB12-binding) domain at the C-terminus of LitR from a thermophilic Gram-negative bacterium, Thermus thermophilus HB27. The in vivo mutation of His132 within LitR caused a reduction in the rate of carotenoid production in response to illumination. BIAcore analysis revealed that the illuminated-LitRH132A possesses high DNA-binding activity compared to the wild-type protein. The subunit structure analysis showed that LitRH132A performed an incomplete subunit dissociation. The ability of LitRH132A to associate with AdoB12 was reduced compared with that of the wild-type protein in an equilibration dialysis experiment. Overall, these results suggest that His132 of LitR is involved in the association with AdoB12 as well as the light-sensitive DNA-binding activity based on oligomer dissociation.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Histidina/genética , Fotorreceptores Microbianos/genética , Thermus thermophilus/genética , Thermus thermophilus/fisiologia , Sequência de Aminoácidos/genética , Regulação Bacteriana da Expressão Gênica , Luz , Mutação/genética , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Transcrição Gênica/genética
2.
J Bacteriol ; 197(14): 2301-15, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25917914

RESUMO

UNLABELLED: The LitR/CarH family of proteins is a light-sensitive MerR family of transcriptional regulators that contain an adenosyl B12 (coenzyme B12 or AdoB12)-binding domain at the C terminus. The genes encoding these proteins are found in phylogenetically diverse bacterial genera; however, the biochemical properties of these proteins from Gram-positive bacteria remain poorly understood. We performed genetic and biochemical analyses of a homolog of the LitR protein from Bacillus megaterium QM B1551, a Gram-positive endospore-forming soil bacterium. Carotenoid production was induced by illumination in this bacterium. In vivo analysis demonstrated that LitR plays a central role in light-inducible carotenoid production and serves as a negative regulator of the light-inducible transcription of crt and litR itself. Biochemical evidence showed that LitR in complex with AdoB12 binds to the promoter regions of litR and the crt operon in a light-sensitive manner. In vitro transcription experiments demonstrated that AdoB12-LitR inhibited the specific transcription of the crt promoter generated by a σ(A)-containing RNA polymerase holoenzyme under dark conditions. Collectively, these data indicate that the AdoB12-LitR complex serves as a photoreceptor with DNA-binding activity in B. megaterium QM B1551 and that its function as a transcriptional repressor is fundamental to the light-induced carotenoid production. IMPORTANCE: Members of the LitR/CarH family are AdoB12-based photosensors involved in light-inducible carotenoid production in nonphototrophic Gram-negative bacteria. Our study revealed that Bacillus LitR in complex with AdoB12 also serves as a transcriptional regulator with a photosensory function, which indicates that the LitR/CarH family is generally involved in the light-inducible carotenoid production of nonphototrophic bacteria.


Assuntos
Bacillus megaterium/metabolismo , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Cobamidas/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Sequência de Aminoácidos , Bacillus megaterium/genética , Sequência de Bases , Sítios de Ligação , Cobamidas/química , Pegada de DNA , Desoxirribonuclease I/metabolismo , Luz , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica
3.
Microbiology (Reading) ; 160(Pt 12): 2650-2660, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25294106

RESUMO

LdrP (TT_P0055) (LitR-dependent regulatory protein) is one of the four cAMP receptor protein (CRP)/FNR family transcriptional regulators retained by the extremely thermophilic bacterium Thermus thermophilus. Previously, we reported that LdrP served as a positive regulator for the light-induced transcription of crtB, a carotenoid biosynthesis gene encoded on the megaplasmid of this organism. Here, we showed that LdrP also functions as an activator of the expression of genes clustered around the crtB gene under the control of LitR, an adenosyl B12-bound light-sensitive regulator. Transcriptome analysis revealed the existence of 19 LitR-dependent genes on the megaplasmid. S1 nuclease protection assay confirmed that the promoters preceding TT_P0044 (P44), TT_P0049 (P49) and TT_P0070 (P70) were activated upon illumination in the WT strain. An ldrP mutant lost the ability to activate P44, P49 and P70, whilst disruption of litR resulted in constitutive transcription from these promoters irrespective of illumination, indicating that these genes were photo-dependently regulated by LdrP and LitR. An in vitro transcription experiment demonstrated that LdrP directly activated mRNA synthesis from P44 and P70 by the Thermus RNA polymerase holocomplex. The present evidence indicated that LdrP was the positive regulator essential for the transcription of the T. thermophilus light-inducible cluster encoded on the megaplasmid.


Assuntos
Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Plasmídeos , Thermus thermophilus/genética , Thermus thermophilus/efeitos da radiação , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Dados de Sequência Molecular , Família Multigênica , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Transcrição Gênica , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA