Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pathol ; 249(3): 295-307, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31298733

RESUMO

Grade IV astrocytoma/glioblastoma multiforme (GBM) is essentially incurable, partly due to its heterogenous nature, demonstrated even within the glioma-initiating cell (GIC) population. Increased therapy resistance of GICs is coupled to transition into a mesenchymal (MES) cell state. The GBM MES molecular signature displays a pronounced inflammatory character and its expression vary within and between tumors. Herein, we investigate how MES transition of GBM cells relates to inflammatory responses of normal astroglia. In response to CNS insults astrocytes enter a reactive cell state and participate in directing neuroinflammation and subsequent healing processes. We found that the MES signature show strong resemblance to gene programs induced in reactive astrocytes. Likewise, astrocyte reactivity gene signatures were enriched in therapy-resistant MES-like GIC clones. Variable expression of astrocyte reactivity related genes also largely defined intratumoral GBM cell heterogeneity at the single-cell level and strongly correlated with our previously defined therapy-resistance signature (based on linked molecular and functional characterization of GIC clones). In line with this, therapy-resistant MES-like GIC secreted immunoregulatory and tissue repair related proteins characteristic of astrocyte reactivity. Moreover, sensitive GIC clones could be made reactive through long-term exposure to the proinflammatory cytokine interleukin 1 beta (IL1ß). IL1ß induced a slow MES transition, increased therapy resistance, and a shift in DNA methylation profile towards that of resistant clones, which confirmed a slow reprogramming process. In summary, GICs enter through MES transition a reactive-astrocyte-like cell state, connected to therapy resistance. Thus, from a biological point of view, MES GICs would preferably be called 'reactive GICs'. The ability of GBM cells to mimic astroglial reactivity contextualizes the immunomodulatory and microenvironment reshaping abilities of GBM cells that generate a tumor-promoting milieu. This insight will be important to guide the development of future sensitizing therapies targeting treatment-resistant relapse-driving cell populations as well as enhancing the efficiency of immunotherapies in GBM. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/farmacologia , Astrócitos/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glioma/tratamento farmacológico , Antineoplásicos/efeitos adversos , Astrócitos/metabolismo , Astrócitos/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Humanos , Gradação de Tumores , Transcriptoma , Células Tumorais Cultivadas , Microambiente Tumoral
3.
Cell Rep ; 18(4): 977-990, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28122246

RESUMO

The identity of the glioblastoma (GBM) cell of origin and its contributions to disease progression and treatment response remain largely unknown. We have analyzed how the phenotypic state of the initially transformed cell affects mouse GBM development and essential GBM cell (GC) properties. We find that GBM induced in neural stem-cell-like glial fibrillary acidic protein (GFAP)-expressing cells in the subventricular zone of adult mice shows accelerated tumor development and produces more malignant GCs (mGC1GFAP) that are less resistant to cancer drugs, compared with those originating from more differentiated nestin- (mGC2NES) or 2,'3'-cyclic nucleotide 3'-phosphodiesterase (mGC3CNP)-expressing cells. Transcriptome analysis of mouse GCs identified a 196 mouse cell origin (MCO) gene signature that was used to partition 61 patient-derived GC lines. Human GC lines that clustered with the mGC1GFAP cells were also significantly more self-renewing, tumorigenic, and sensitive to cancer drugs compared with those that clustered with mouse GCs of more differentiated origin.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/genética , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Adulto , Idoso , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Encéfalo/citologia , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p19/deficiência , Inibidor de Quinase Dependente de Ciclina p19/genética , Intervalo Livre de Doença , Feminino , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Pessoa de Meia-Idade , Nestina/genética , Nestina/metabolismo , Células Tumorais Cultivadas
4.
Oncotarget ; 8(4): 6341-6352, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-27974676

RESUMO

The novel aminopeptidase potentiated alkylating agent melflufen, was evaluated for activity in acute myeloid leukemia in a range of in vitro models, as well as in a patient derived xenograft study. All tested AML cell lines were highly sensitive to melflufen while melphalan was considerably less potent. In the HL-60 cell line model, synergy was observed for the combination of melflufen and cytarabine, an interaction that appeared sequence dependent with increased synergy when melflufen was added before cytarabine. Also, in primary cultures of AML cells from patients melflufen was highly active, while normal PBMC cultures appeared less sensitive, indicating a 7-fold in vitro therapeutic index. Melphalan, on the other hand, was only 2-fold more potent in the AML patient samples compared with PBMCs. Melflufen was equally active against non-malignant, immature CD34+ progenitor cells and a more differentiated CD34+ derived cell population (GM14), whereas the stem cell like cells were less sensitive to melphalan. Finally, melflufen treatment showed significant anti-leukemia activity and increased survival in a patient derived xenograft of AML in mice. In conclusion, melflufen demonstrates high and significant preclinical activity in AML and further clinical evaluation seem warranted in this disease.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Melfalan/análogos & derivados , Fenilalanina/análogos & derivados , Animais , Antígenos CD34/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Citarabina/farmacologia , Daunorrubicina/farmacologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Feminino , Células HL-60 , Humanos , Concentração Inibidora 50 , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Masculino , Melfalan/farmacologia , Camundongos SCID , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenilalanina/farmacologia , Fatores de Tempo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell Rep ; 17(11): 2994-3009, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27974212

RESUMO

Intratumoral heterogeneity is a hallmark of glioblastoma multiforme and thought to negatively affect treatment efficacy. Here, we establish libraries of glioma-initiating cell (GIC) clones from patient samples and find extensive molecular and phenotypic variability among clones, including a range of responses to radiation and drugs. This widespread variability was observed as a continuum of multitherapy resistance phenotypes linked to a proneural-mesenchymal shift in the transcriptome. Multitherapy resistance was associated with a semi-stable cell state that was characterized by an altered DNA methylation pattern at promoter regions of mesenchymal master regulators and enhancers. The gradient of cell states within the GIC compartment constitutes a distinct form of heterogeneity. Our findings may open an avenue toward the development of new therapeutic rationales designed to reverse resistant cell states.


Assuntos
Metilação de DNA/genética , Glioblastoma/genética , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/efeitos da radiação , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/radioterapia , Humanos , Células-Tronco Neoplásicas/patologia , Regiões Promotoras Genéticas
6.
Biochem Biophys Res Commun ; 431(2): 117-23, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23318177

RESUMO

Piperlongumine, a natural product from the plant Piperlongum, has demonstrated selective cytotoxicity to tumor cells and to show anti-tumor activity in animal models [1]. Cytotoxicity of piperlongumine has been attributed to increase in reactive oxygen species (ROS) in cancer cells. We here report that piperlongumine is an inhibitor of the ubiquitin-proteasome system (UPS). Exposure of tumor cells to piperlongumine resulted in accumulation of a reporter substrate known to be rapidly degraded by the proteasome, and of accumulation of ubiquitin conjugated proteins. However, no inhibition of 20S proteolytic activity or 19S deubiquitinating activity was observed at concentrations inducing cytotoxicity. Consistent with previous reports, piperlongumine induced strong ROS activation which correlated closely with UPS inhibition and cytotoxicity. Proteasomal blocking could not be mimicked by agents that induce oxidative stress. Our results suggest that the anti-cancer activity of piperlongumine involves inhibition of the UPS at a pre-proteasomal step, prior to deubiquitination of malfolded protein substrates at the proteasome, and that the previously reported induction of ROS is a consequence of this inhibition.


Assuntos
Dioxolanos/farmacologia , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Ubiquitina/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Neoplasias/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma/efeitos dos fármacos
7.
Invest New Drugs ; 31(3): 587-98, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23179339

RESUMO

Gambogic acid (GA), displays cytotoxicity towards a wide variety of tumor cells and has been shown to affect many important cell-signaling pathways. In the present work, we investigated the mechanism of action of GA by analysis of drug-induced changes in gene expression profiles and identified GA and the derivative dihydro GA as possible inhibitors of the ubiquitin-proteasome system (UPS). Both GA and dihydro GA inhibited proteasome function in cells resulting in the accumulation of polyubiquitin complexes. In vitro experiments showed that both GA and dihydro GA inhibited 20S chymotrypsin activity and the inhibitory effects of GA and dihydro GA on proteasome function corresponded with apoptosis induction and cell death. In conclusion, our results show that GA and dihydro GA exert their cytotoxic activity through inhibition of the UPS, specifically by acting as inhibitors of the chymotrypsin activity of the 20S proteasome.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteassoma/farmacologia , Xantonas/farmacologia , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Células MCF-7 , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
8.
Cancer Chemother Pharmacol ; 69(3): 697-707, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21984220

RESUMO

PURPOSE: The aim of this study was to evaluate a phenotypic cell panel with tumor cells from various patients and normal cells for preclinical profiles of antitumor efficacy and toxicity of anticancer drugs. METHODS: The antitumor activity of fourteen anticancer drugs was tested in over one hundred tumor samples from patients with solid or hematological malignancies. Drug activity against four normal cell types was used for the assessment of normal tissue toxicity. In vitro activity of the drugs was compared with indications approved by the Food and Drug Administration and established adverse event profiles. RESULTS: In general, in vitro drug activity in tumor cells from patients reflected known clinical activity of the drugs investigated. For example, the clinical activity of imatinib in chronic myeloid leukemia was clearly detected in the tumor panel. Further, and in accordance with clinical use, cisplatin and bortezomib showed high activity in ovarian cancer and myeloma samples, respectively. The normal cell models roughly reflected known clinical toxicity profiles and were able to detect differences in therapeutic index, e.g., between targeted drugs and classical cytotoxic agents. For example, the high tolerability of imatinib and the well-known renal toxicity of cisplatin were demonstrated. CONCLUSIONS: In preclinical drug development, primary tumor cells from patients can be used for the prediction of cancer diagnosis-specific activity and may aid in the selection of diagnoses for clinical trials. By using tumor and toxicity panels together, information about therapeutic index may be derived, which may be useful when choosing among drug candidates with similar tumor effects.


Assuntos
Antineoplásicos , Células Epiteliais/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Modelos Biológicos
9.
Chem Biol Drug Des ; 78(4): 547-57, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21726416

RESUMO

Cell-based anticancer drug screening generally utilizes rapidly proliferating tumour cells grown as monolayer cultures. Hit compounds from such screens are not necessarily effective on hypoxic and slowly proliferating cells in 3-D tumour tissue. The aim of this study was to examine the potential usefulness of 3-D cultured tumour cells for anticancer drug screening. We used colon carcinoma multicellular spheroids containing hypoxic and quiescent cells in core areas for this purpose. Three libraries (∼11 000 compounds) were screened using antiproliferative activity and/or apoptosis as end-points. Screening of monolayer and spheroid cultures was found to identify different sets of hit compounds. Spheroid screening enriched for hydrophobic compounds: median XLogP values of 4.3 and 4.4 were observed for the hits in two independent screening campaigns. Mechanistic analysis revealed that the majority of spheroid screening hits were microtubuli inhibitors. One of these inhibitors was examined in detail and found to be effective against non-dividing cells in the hypoxic centres of spheroids. Spheroid screening represents a conceptually new strategy for anticancer drug discovery. Our findings have implications for drug library design and hit selection in projects aimed to develop drugs for the treatment of solid tumours.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Mitose/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Células Tumorais Cultivadas/efeitos dos fármacos , Antineoplásicos/química , Carcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Desenho de Fármacos , Humanos
10.
Toxicol Lett ; 194(3): 102-7, 2010 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-20167269

RESUMO

One of the most common dose limiting adverse effects in cancer treatment is myelotoxicity. The aim of this study was to develop an in vitro method for measuring potential myelotoxic properties of a drug candidate in a high throughput setting. Human CD34(+) progenitor cells from umbilical cord blood were plated in 384-well microplates with drugs in liquid culture, supplemented with specific cytokines for the granulocytopoietic-macrophage lineage. After 7 or 14 days of proliferation and differentiation the cells were analyzed using the automated non-clonogenic fluorometric microculture cytotoxicity assay (FMCA). Two types of assays setups were evaluated, the FMCA-GM7 where cells were exposed to drugs directly after thawing and cytotoxicity measured on day 7 in contrast to the FMCA-GM14 where the cells were cultured 7 days prior to plating and drug exposure, with viability analysis on day 14 of differentiation. Drug sensitivity was similar in both assays and method validation was performed using 24 drugs with known myelotoxic profile (acyclovir, bortezomib, busulfan, carboplatin, chloramphenicol, chlorpromazine, cisplatin, cytarabine, clozapine, doxorubicin, erlotinib, etoposide, 5-fluorouracil, fludarabine, gefitinib, gemcitabine, hydroxyurea, imatinib, lomustine, melphalan, sorafenib, sunitinib, taxol and 6-thioguanine). The 50% inhibitory concentrations (IC(50)) from the FMCA-GM7 and the FMCA-GM14 correlated highly (r = 0.83) and (r = 0.82), respectively, with IC(50) from the established clonogenic assay (CFU-GM), obtained from the literature. The current data suggests that the FMCA-GM could offer a simple and robust alternative to the CFU-GM assay in preclinical hematotoxicity studies.


Assuntos
Fluorometria/métodos , Células Progenitoras de Granulócitos e Macrófagos/efeitos dos fármacos , Antígenos CD34/sangue , Técnicas de Cultura de Células , Avaliação Pré-Clínica de Medicamentos , Sangue Fetal/citologia , Sangue Fetal/imunologia , Citometria de Fluxo , Humanos , Concentração Inibidora 50 , Reprodutibilidade dos Testes , Células-Tronco/efeitos dos fármacos
11.
Invest New Drugs ; 26(3): 195-204, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17922077

RESUMO

OBJECTIVE: The dipeptide J1 acts as a prodrug of melphalan with a significant increased potency in vitro resulting from activation by cellular aminopeptidases. The current study was performed to evaluate the ex vivo profile of J1 using 176 primary tumor cell cultures from patients. In addition, the activity of J1 in combination with eight standard drugs, representing different mechanistic classes, was studied in nine different human tumor cell lines of different histopathological origin. METHODS: Ex vivo evaluation of tumor type selectivity, was performed using the established fluorometric microculture cytotoxicity assay (FMCA). Combinations between J1 and eight standard chemotherapeutic drugs were analyzed using the median-effect method. RESULTS: The prodrug J1 expressed approximately 50- to 100-fold higher potency but similar activity profile as that of its metabolite, melphalan. The difference was greater in some diagnoses (e.g. breast cancer, NHL and AML), and exceptionally high in some breast cancer samples with aggressive phenotypes. Combination analysis of J1 and standard chemotherapeutics yielded several potentially additive and synergistic interactions, most striking for etoposide with significant synergism in all studied cell lines. CONCLUSIONS: In conclusion, the ex vivo profile suggests that further evaluation of J1 as the alkylating agent in for example aggressive breast cancer might be of particular interest, preferentially in combination with DNA-topoisomerase II inhibitors like etoposide.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Dipeptídeos/farmacologia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Fluorometria , Humanos , Melfalan/administração & dosagem , Pró-Fármacos/farmacologia
12.
Cancer Chemother Pharmacol ; 58(6): 749-58, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16528529

RESUMO

PURPOSE: Resistance to anticancer drugs is a major problem in chemotherapy. In order to identify drugs with selective cytotoxic activity in drug-resistant cancer cells, the annotated compound library LOPAC1280, containing compounds from 56 pharmacological classes, was screened in the myeloma cell line RPMI 8226 and its doxorubicin-resistant subline 8226/Dox40. METHODS: Cell survival was measured by the Fluorometric Microculture Cytotoxicity Assay. RESULTS: Selective cytotoxic activity in 8226/Dox40 was obtained for 33 compounds, with the most pronounced difference observed for the glucocorticoids. A microarray analysis of the cells showed a difference in mRNA-expression for the glucocorticoid receptor suggesting potential mechanisms for the difference in glucocorticoid sensitivity. In the presence of the glucocorticoid-receptor antagonist RU486, the sensitivity to the glucocorticoids was reduced and a similar effect level in RPMI 8226 and 8226/Dox40 was achieved. CONCLUSION: In conclusion, screening of mechanistically annotated compounds on drug-resistant cancer cells can identify compounds with selective activity and provide a basis for the development of novel treatments of drug-resistant malignancies.


Assuntos
Antineoplásicos/farmacologia , Glucocorticoides/farmacologia , Betametasona/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Concentração Inibidora 50 , Mifepristona/farmacologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA