Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Transl Res ; 15(7): 4573-4586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560216

RESUMO

OBJECTIVES: Animal models are needed to reliably separate the effects of mechanical joint instability and inflammation on posttraumatic osteoarthritis (PTOA) pathogenesis. We hypothesized that our modified intra-articular drilling (mIAD) procedure induces cartilage damage and synovial changes through increased inflammation without causing changes in gait. METHODS: Twenty-four Yucatan minipigs were randomized into the mIAD (n=12) or sham control group (n=12). mIAD animals had two osseous tunnels drilled into each of the tibia and femur adjacent to the anterior cruciate ligament (ACL) attachment sites on the left hind knee. Surgical and contralateral limbs were harvested 15 weeks post-surgery. Cartilage degeneration was evaluated macroscopically and histologically. Synovial changes were evaluated histologically. Interleukin-1 beta (IL-1ß), nuclear factor kappa B (NF-κB), and tumor necrosis factor alpha (TNF-α) mRNA expression levels in the synovial membrane were measured using quantitative real-time polymerase chain reaction. IL-1ß and NF-κB levels in chondrocytes were assessed using immunohistochemistry. Load asymmetry during gait was recorded by a pressure-sensing walkway system before and after surgery. RESULTS: The mIAD surgical knees demonstrated greater gross and histological cartilage damage than contralateral (P<.01) and sham knees (P<.05). Synovitis was present only in the mIAD surgical knee. Synovial inflammatory marker (IL-1ß, NF-κB, and TNF-α) expression was three times higher in the mIAD surgical knee than the contralateral (P<.05). Chondrocyte IL-1ß and NF-κB levels were highest in the mIAD surgical knee. In general, there were no significant changes in gait. CONCLUSIONS: The mIAD model induced PTOA through inflammation without affecting gait mechanics. This large animal model has significant applications for evaluating the role of inflammation in PTOA and for developing therapies aimed at reducing inflammation following joint injury.

2.
Bioengineering (Basel) ; 10(7)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37508839

RESUMO

Neuromuscular function is thought to contribute to posttraumatic osteoarthritis (PTOA) risk in anterior cruciate ligament (ACL)-reconstructed (ACLR) patients, but sensitive and easy-to-use tools are needed to discern whether complex muscle activation strategies are beneficial or maladaptive. Using an electromyography (EMG) signal analysis technique coupled with a machine learning approach, we sought to: (1) identify whether ACLR muscle activity patterns differed from those of healthy controls, and (2) explore which combination of patient outcome measures (thigh muscle girth, knee laxity, hop distance, and activity level) predicted the extent of osteoarthritic changes via magnetic resonance imaging (MRI) in ACLR patients. Eleven ACLR patients 10-15 years post-surgery and 12 healthy controls performed a hop activity while lower limb muscle EMG was recorded bilaterally. Osteoarthritis was evaluated based on MRI. ACLR muscle activity patterns were bilaterally symmetrical and differed from those of healthy controls, suggesting the presence of a global adaptation strategy. Smaller ipsilateral thigh muscle girth was the strongest predictor of inferior MRI scores. The ability of our EMG analysis approach to detect meaningful neuromuscular differences that could ultimately be related to thigh muscle girth provides the foundation to further investigate a direct link between muscle activation patterns and PTOA risk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA