Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Neuropathol Commun ; 5(1): 40, 2017 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-28554330

RESUMO

Onconeural antibodies are associated with cancer and paraneoplastic encephalitis. While their pathogenic role is still largely unknown, their high diagnostic value is undisputed. In this study we describe the discovery of a novel target of autoimmunity in an index case of paraneoplastic encephalitis associated with urogenital cancer.A 75-year-old man with a history of invasive bladder carcinoma 6 years ago with multiple recurrences and a newly discovered renal cell carcinoma presented with seizures and progressive cognitive decline followed by super-refractory status epilepticus. Clinical and ancillary findings including brain biopsy suggested paraneoplastic encephalitis. Immunohistochemistry of the brain biopsy was used to characterize the inflammatory response. Indirect immunofluorescence assay (IFA) was used for autoantibody screening. The autoantigen was identified by histo-immunoprecipitation and mass spectrometry and was validated by expressing the recombinant antigen in HEK293 cells and neutralization tests. Sera from 125 control patients were screened using IFA to test for the novel autoantibodies.IFA analysis of serum revealed a novel autoantibody against brain tissue. An intracellular enzyme, Rho-associated protein kinase 2 (ROCK2), was identified as target-antigen. ROCK2 was expressed in affected brain tissue and archival bladder tumor samples of this patient. Brain histopathology revealed appositions of cytotoxic CD8+ T cells on ROCK2-positive neurons. ROCK2 antibodies were not found in the sera of 20 patients with bladder cancer and 17 with renal cancer, both without neurological symptoms, 49 healthy controls, and 39 patients with other antineuronal autoantibodies. In conclusion, novel onconeural antibodies targeting ROCK2 are associated with paraneoplastic encephalitis and should be screened for when paraneoplastic neurological syndromes, especially in patients with urogenital cancers, occur.


Assuntos
Autoanticorpos/imunologia , Doenças Autoimunes do Sistema Nervoso/enzimologia , Encefalite/enzimologia , Encefalite/imunologia , Síndromes Paraneoplásicas do Sistema Nervoso/enzimologia , Síndromes Paraneoplásicas do Sistema Nervoso/imunologia , Quinases Associadas a rho/imunologia , Idoso , Autoanticorpos/sangue , Doenças Autoimunes do Sistema Nervoso/imunologia , Autoimunidade , Encéfalo/enzimologia , Encéfalo/imunologia , Carcinoma/imunologia , Células HEK293 , Humanos , Neoplasias Renais/imunologia , Masculino , Neoplasias da Bexiga Urinária/imunologia
2.
Neurol Neuroimmunol Neuroinflamm ; 3(4): e255, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27458598

RESUMO

OBJECTIVE: To report on a Caucasian patient who developed steroid-responsive transverse myelitis, graft vs host disease of the gut, and anti-GluRδ2 after allogenic stem cell transplantation. METHODS: Histoimmunoprecipitation (HIP) with the patient's serum and cryosections of rat and porcine cerebellum followed by mass spectrometry was used to identify the autoantigen. Correct identification was verified by indirect immunofluorescence using recombinant GluRδ2 expressed in HEK293 cells. RESULTS: The patient's serum produced a granular staining of the cerebellar molecular layer (immunoglobulin G1 and immunoglobulin G3; endpoint titer: 1:1,000) but did not react with other CNS tissues or 28 established recombinant neural autoantigens. HIP revealed a unique protein band at ∼110 kDa that was identified as GluRδ2. The patient's serum also stained GluRδ2 transfected but not mock-transfected HEK293 cells. Control sera from 38 patients with multiple sclerosis, 85 patients with other neural autoantibodies, and 205 healthy blood donors were negative for anti-GluRδ2. Preadsorption with lysate from HEK293-GluRδ2 neutralized the patient's tissue reaction whereas control lysate had no effect. In addition to anti-GluRδ2, the patient's serum contained immunoglobulin G autoantibodies against the pancreatic glycoprotein CUZD1, which are known to be markers of Crohn disease. CONCLUSIONS: In the present case, the development of anti-GluRδ2 was associated with transverse myelitis, which was supposedly triggered by the stem cell transplantation. Similar to encephalitis in conjunction with anti-GluRδ2 reported in a few Japanese patients, the patient's neurologic symptoms ameliorated after steroid therapy.

3.
J Mol Med (Berl) ; 92(6): 571-81, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24838609

RESUMO

Epithelial-mesenchymal transition (EMT) represents an important mechanism during development and wound healing, and its deregulation has been implicated in metastasis. Recently, the Krüppel-type zinc-finger transcription factor ZNF281 has been characterized as an EMT-inducing transcription factor (EMT-TF). Expression of ZNF281 is induced by the EMT-TF SNAIL and inhibited by the tumor suppressive microRNA miR-34a, which mediates repression of ZNF281 by the p53 tumor suppressor. Therefore, SNAIL, miR-34a and ZNF281 form a feed-forward regulatory loop, which controls EMT. Deregulation of this circuitry by mutational and epigenetic alterations in the p53/miR-34a axis promotes colorectal cancer (CRC) progression and metastasis formation. As ZNF281 physically interacts with the transcription factors NANOG, OCT4, SOX2, and c-MYC, it has been implicated in the regulation of pluripotency, stemness, and cancer. Accordingly, ectopic ZNF281 expression in CRC lines induces the stemness markers LGR5 and CD133 and promotes sphere formation, suggesting that the elevated expression of ZNF281 detected in cancer may enhance tumor stem cell formation and/or function. Here, we review the functional and organismal studies of ZNF281/ZBP-99 and its close relative ZBP-89/ZFP148 reported so far. Taken together, ZNF281 related biology has the potential to be translated into cancer diagnostic, prognostic, and therapeutic approaches.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Células-Tronco Neoplásicas/metabolismo , Transativadores/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Repressoras , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
EMBO J ; 32(23): 3079-95, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24185900

RESUMO

Here, we show that expression of ZNF281/ZBP-99 is controlled by SNAIL and miR-34a/b/c in a coherent feed-forward loop: the epithelial-mesenchymal transition (EMT) inducing factor SNAIL directly induces ZNF281 transcription and represses miR-34a/b/c, thereby alleviating ZNF281 mRNA from direct down-regulation by miR-34. Furthermore, p53 activation resulted in a miR-34a-dependent repression of ZNF281. Ectopic ZNF281 expression in colorectal cancer (CRC) cells induced EMT by directly activating SNAIL, and was associated with increased migration/invasion and enhanced ß-catenin activity. Furthermore, ZNF281 induced the stemness markers LGR5 and CD133, and increased sphere formation. Conversely, experimental down-regulation of ZNF281 resulted in mesenchymal-epithelial transition (MET) and inhibition of migration/invasion, sphere formation and lung metastases in mice. Ectopic c-MYC induced ZNF281 protein expression in a SNAIL-dependent manner. Experimental inactivation of ZNF281 prevented EMT induced by c-MYC or SNAIL. In primary CRC samples, expression of ZNF281 increased during tumour progression and correlated with recurrence. Taken together, these results identify ZNF281 as a component of EMT-regulating networks, which contribute to metastasis formation in CRC.


Assuntos
Neoplasias da Mama/patologia , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Estudos de Casos e Controles , Movimento Celular , Células Cultivadas , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Dados de Sequência Molecular , Invasividade Neoplásica , Proteínas Repressoras , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição da Família Snail , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Proteína Supressora de Tumor p53 , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA