Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
2.
Nat Commun ; 13(1): 6623, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333297

RESUMO

Activities of dendritic cells (DCs) that present tumor antigens are often suppressed in tumors. Here we report that this suppression is induced by tumor microenvironment-derived factors, which activate the activating transcription factor-3 (ATF3) transcription factor and downregulate cholesterol 25-hydroxylase (CH25H). Loss of CH25H in antigen presenting cells isolated from human lung tumors is associated with tumor growth and lung cancer progression. Accordingly, mice lacking CH25H in DCs exhibit an accelerated tumor growth, decreased infiltration and impaired activation of intratumoral CD8+ T cells. These mice do not establish measurable long-term immunity against malignant cells that undergo chemotherapy-induced immunogenic cell death. Mechanistically, downregulation of CH25H stimulates membrane fusion between endo-phagosomes and lysosomes, accelerates lysosomal degradation and restricts cross-presentation of tumor antigens in the intratumoral DCs. Administration of STING agonist MSA-2 reduces the lysosomal activity in DCs, restores antigen cross presentation, and increases therapeutic efficacy of PD-1 blockade against tumour challenge in a CH25H-dependent manner. These studies highlight the importance of downregulation of CH25H in DCs for tumor immune evasion and resistance to therapy.


Assuntos
Apresentação Cruzada , Neoplasias Pulmonares , Camundongos , Humanos , Animais , Antígenos de Neoplasias , Linfócitos T CD8-Positivos , Células Dendríticas , Neoplasias Pulmonares/metabolismo , Lisossomos , Camundongos Endogâmicos C57BL , Microambiente Tumoral
3.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638621

RESUMO

Previously, we showed that mice treated with cyclophosphamide (CTX) 4 days before intravenous injection of breast cancer cells had more cancer cells in the lung at 3 h after cancer injection than control counterparts without CTX. At 4 days after its injection, CTX is already excreted from the mice, allowing this pre-treatment design to reveal how CTX may modify the lung environment to indirectly affect cancer cells. In this study, we tested the hypothesis that the increase in cancer cell abundance at 3 h by CTX is due to an increase in the adhesiveness of vascular wall for cancer cells. Our data from protein array analysis and inhibition approach combined with in vitro and in vivo assays support the following two-prong mechanism. (1) CTX increases vascular permeability, resulting in the exposure of the basement membrane (BM). (2) CTX increases the level of matrix metalloproteinase-2 (MMP-2) in mouse serum, which remodels the BM and is functionally important for CTX to increase cancer abundance at this early stage. The combined effect of these two processes is the increased accessibility of critical protein domains in the BM, resulting in higher vascular adhesiveness for cancer cells to adhere. The critical protein domains in the vascular microenvironment are RGD and YISGR domains, whose known binding partners on cancer cells are integrin dimers and laminin receptor, respectively.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ciclofosfamida/farmacologia , Metaloproteinase 2 da Matriz/sangue , Microambiente Tumoral/efeitos dos fármacos , Animais , Membrana Basal/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Permeabilidade Capilar/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Integrina beta1/metabolismo , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Camundongos Knockout , Domínios Proteicos , Microambiente Tumoral/fisiologia
4.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298975

RESUMO

Previously, we showed that chemotherapy paradoxically exacerbated cancer cell colonization at the secondary site in a manner dependent on Atf3, a stress-inducible gene, in the non-cancer host cells. Here, we present evidence that this phenotype is established at an early stage of colonization within days of cancer cell arrival. Using mouse breast cancer models, we showed that, in the wild-type (WT) lung, cyclophosphamide (CTX) increased the ability of the lung to retain cancer cells in the vascular bed. Although CTX did not change the WT lung to affect cancer cell extravasation or proliferation, it changed the lung macrophage to be pro-cancer, protecting cancer cells from death. This, combined with the initial increase in cell retention, resulted in higher lung colonization in CTX-treated than control-treated mice. In the Atf3 knockout (KO) lung, CTX also increased the ability of lung to retain cancer cells. However, the CTX-treated KO macrophage was highly cytotoxic to cancer cells, resulting in no increase in lung colonization-despite the initial increase in cell retention. In summary, the status of Atf3 dictates the dichotomous activity of macrophage: pro-cancer for CTX-treated WT macrophage but anti-cancer for the KO counterpart. This dichotomy provides a mechanistic explanation for CTX to exacerbate lung colonization in the WT but not Atf3 KO lung.


Assuntos
Fator 3 Ativador da Transcrição/fisiologia , Ciclofosfamida/toxicidade , Neoplasias Pulmonares/secundário , Macrófagos/fisiologia , Neoplasias Mamárias Experimentais/genética , Metástase Neoplásica/fisiopatologia , Proteínas de Neoplasias/fisiologia , Estresse Fisiológico/genética , Macrófagos Associados a Tumor/fisiologia , Animais , Peptídeos Catiônicos Antimicrobianos/biossíntese , Peptídeos Catiônicos Antimicrobianos/genética , Linhagem Celular Tumoral , Ciclofosfamida/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Genótipo , Humanos , Neoplasias Pulmonares/metabolismo , Ativação de Macrófagos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Camundongos Transgênicos , Terapia Neoadjuvante/efeitos adversos , Metástase Neoplásica/genética , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Transplante de Neoplasias/métodos , Células-Tronco Neoplásicas/patologia , Migração Transendotelial e Transepitelial , Microambiente Tumoral , Macrófagos Associados a Tumor/efeitos dos fármacos , Catelicidinas
5.
Int J Mol Sci ; 19(11)2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30373101

RESUMO

An emerging picture in cancer biology is that, paradoxically, chemotherapy can actively induce changes that favor cancer progression. These pro-cancer changes can be either inside (intrinsic) or outside (extrinsic) the cancer cells. In this review, we will discuss the extrinsic pro-cancer effect of chemotherapy; that is, the effect of chemotherapy on the non-cancer host cells to promote cancer progression. We will focus on metastasis, and will first discuss recent data from mouse models of breast cancer. Despite reducing the size of primary tumors, chemotherapy changes the tumor microenvironment, resulting in an increased escape of cancer cells into the blood stream. Furthermore, chemotherapry changes the tissue microenvironment at the distant sites, making it more hospitable to cancer cells upon their arrival. We will then discuss the idea and evidence that these devastating pro-metastatic effects of chemotherapy can be explained in the context of adaptive-response. At the end, we will discuss the potential relevance of these mouse data to human breast cancer and their implication on chemotherapy in the clinic.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Metástase Neoplásica/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Mama/efeitos dos fármacos , Mama/patologia , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Metástase Neoplásica/patologia , Microambiente Tumoral/efeitos dos fármacos
6.
Cell Stem Cell ; 23(2): 210-225.e6, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30075129

RESUMO

The cellular and mechanistic bases underlying endothelial regeneration of adult large vessels have proven challenging to study. Using a reproducible in vivo aortic endothelial injury model, we characterized cellular dynamics underlying the regenerative process through a combination of multi-color lineage tracing, parabiosis, and single-cell transcriptomics. We found that regeneration is a biphasic process driven by distinct populations arising from differentiated endothelial cells. The majority of cells immediately adjacent to the injury site re-enter the cell cycle during the initial damage response, with a second phase driven by a highly proliferative subpopulation. Endothelial regeneration requires activation of stress response genes including Atf3, and aged aortas compromised in their reparative capacity express less Atf3. Deletion of Atf3 reduced endothelial proliferation and compromised the regeneration. These findings provide important insights into cellular dynamics and mechanisms that drive responses to large vessel injury.


Assuntos
Aorta/citologia , Células Endoteliais/citologia , Fator 3 Ativador da Transcrição/deficiência , Fator 3 Ativador da Transcrição/metabolismo , Animais , Aorta/lesões , Aorta/metabolismo , Proliferação de Células , Células Endoteliais/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos C57BL
7.
Nature ; 556(7702): 501-504, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670287

RESUMO

Metabolic regulation has been recognized as a powerful principle guiding immune responses. Inflammatory macrophages undergo extensive metabolic rewiring 1 marked by the production of substantial amounts of itaconate, which has recently been described as an immunoregulatory metabolite 2 . Itaconate and its membrane-permeable derivative dimethyl itaconate (DI) selectively inhibit a subset of cytokines 2 , including IL-6 and IL-12 but not TNF. The major effects of itaconate on cellular metabolism during macrophage activation have been attributed to the inhibition of succinate dehydrogenase2,3, yet this inhibition alone is not sufficient to account for the pronounced immunoregulatory effects observed in the case of DI. Furthermore, the regulatory pathway responsible for such selective effects of itaconate and DI on the inflammatory program has not been defined. Here we show that itaconate and DI induce electrophilic stress, react with glutathione and subsequently induce both Nrf2 (also known as NFE2L2)-dependent and -independent responses. We find that electrophilic stress can selectively regulate secondary, but not primary, transcriptional responses to toll-like receptor stimulation via inhibition of IκBζ protein induction. The regulation of IκBζ is independent of Nrf2, and we identify ATF3 as its key mediator. The inhibitory effect is conserved across species and cell types, and the in vivo administration of DI can ameliorate IL-17-IκBζ-driven skin pathology in a mouse model of psoriasis, highlighting the therapeutic potential of this regulatory pathway. Our results demonstrate that targeting the DI-IκBζ regulatory axis could be an important new strategy for the treatment of IL-17-IκBζ-mediated autoimmune diseases.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Proteínas I-kappa B/metabolismo , Succinatos/metabolismo , Animais , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Psoríase/tratamento farmacológico , Psoríase/patologia , Estresse Fisiológico/efeitos dos fármacos , Succinatos/administração & dosagem , Succinatos/química , Succinatos/farmacologia , Succinatos/uso terapêutico , Receptores Toll-Like/imunologia
8.
Proc Natl Acad Sci U S A ; 114(34): E7159-E7168, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28784776

RESUMO

Chemotherapy is a double-edged sword. It is anticancer because of its cytotoxicity. Paradoxically, by increasing chemoresistance and cancer metastasis, it is also procancer. However, the underlying mechanisms for chemotherapy-induced procancer activities are not well understood. Here we describe the ability of paclitaxel (PTX), a frontline chemotherapeutic agent, to exacerbate metastasis in mouse models of breast cancer. We demonstrate that, despite the apparent benefit of reducing tumor size, PTX increased the circulating tumor cells in the blood and enhanced the metastatic burden at the lung. At the primary tumor, PTX increased the abundance of the tumor microenvironment of metastasis, a landmark microanatomical structure at the microvasculature where cancer cells enter the blood stream. At the metastatic lung, PTX improved the tissue microenvironment (the "soil") for cancer cells (the "seeds") to thrive; these changes include increased inflammatory monocytes and reduced cytotoxicity. Importantly, these changes in the primary tumor and the metastatic lung were all dependent on Atf3, a stress-inducible gene, in the noncancer host cells. Together, our data provide mechanistic insights into the procancer effect of chemotherapy, explaining its paradox in the context of the seed-and-soil theory. Analyses of public datasets suggest that our data may have relevance to human cancers. Thus, ATF3 in the host cells links a chemotherapeutic agent-a stressor-to immune modulation and cancer metastasis. Dampening the effect of ATF3 may improve the efficacy of chemotherapy.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Antineoplásicos/efeitos adversos , Neoplasias da Mama/metabolismo , Paclitaxel/efeitos adversos , Fator 3 Ativador da Transcrição/genética , Animais , Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Metástase Neoplásica , Paclitaxel/administração & dosagem , Estresse Fisiológico/efeitos dos fármacos
9.
Cardiovasc Res ; 113(2): 134-146, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28082453

RESUMO

AIMS: Obesity and type 2 diabetes (T2D) trigger a harmful stress-induced cardiac remodeling process known as cardiomyopathy. These diseases represent a serious and widespread health problem in the Western world; however the underlying molecular basis is not clear. ATF3 is an 'immediate early' gene whose expression is highly and transiently induced in response to multiple stressors such as metabolic, oxidative, endoplasmic reticulum and inflammation, stressors that are involved in T2D cardiomyopathy. The role of ATF3 in diabetic cardiomyopathy is currently unknown. Our research has aimed to study the effect of ATF3 expression on cardiomyocytes, heart function and glucose homeostasis in an obesity-induced T2D mouse model. METHODS AND RESULTS: We used wild type mice (WT) as well as mutant mice with a cardiac-specific ATF3 deficiency (ATF3-cKO). Mice were fed a high-fat diet (HFD) for 15 weeks. HFD induced high ATF3 expression in cardiomyocytes. Mice were examined for cardiac remodeling processes and the diabetic state was assessed. HFD-fed ATF3-cKO mice exhibited severe cardiac fibrosis, higher levels of heart hypertrophic markers, increased inflammation and worse cardiac function, as compared to WT mice. Interestingly, HFD-fed ATF3-cKO mice display increased hyperglycemia and reduced glucose tolerance, despite higher blood insulin levels, as compared to HFD-fed WT mice. Elevated levels of the cardiac inflammatory cytokines IL-6 and TNFα leading to impaired insulin signalling may partially explain the peripheral glucose intolerance. CONCLUSIONS: Cardiac ATF3 has a protective role in dampening the HFD-induced cardiac remodeling processes. ATF3 exerts both local and systemic effects related to T2D-induced cardiomyopathy. This study provides a strong relationship between heart remodeling processes and blood glucose homeostasis.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Cardiomiopatias Diabéticas/sangue , Miócitos Cardíacos/metabolismo , Remodelação Ventricular , Fator 3 Ativador da Transcrição/deficiência , Fator 3 Ativador da Transcrição/genética , Animais , Cardiomegalia/sangue , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Diabetes Mellitus Tipo 2/etiologia , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/farmacologia , Fibrose , Predisposição Genética para Doença , Homeostase , Mediadores da Inflamação/metabolismo , Insulina/sangue , Integrases/genética , Interleucina-6/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/genética , Fenótipo , Regiões Promotoras Genéticas , Fator de Necrose Tumoral alfa/sangue , Remodelação Ventricular/efeitos dos fármacos
10.
Ann Rheum Dis ; 75(3): 586-92, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25589515

RESUMO

BACKGROUND: Activating transcription factor 3 (ATF3), a member of the ATF/cAMP-responsive element binding (CREB) family of transcription factors, regulates cellular response to stress including oxidative stress. The aim of this study was to analyse the role of ATF3 in fibroblast activation in systemic sclerosis (SSc). METHODS: ATF3 was analysed by reverse transcription quantitative PCR, western blot and immunohistochemistry. ATF3 knockout fibroblasts and mice were used to study the functional role of ATF3. Knockdown experiments, reporter assays and coimmunoprecipitation were performed to study the effects of ATF3 on Smad and activation protein 1 (AP-1) signalling. The role of c-Jun was analysed by costaining, specific inactivation and coimmunoprecipitation. RESULTS: Transforming growth factor-ß (TGFß) upregulates the expression of ATF3 in SSc fibroblasts. ATF3-deficient fibroblasts were less sensitive to TGFß, whereas ectopic expression of ATF3 enhanced the profibrotic effects of TGFß. Mechanistically, ATF3 interacts with Smad3 directly on stimulation with TGFß and regulates Smad activity in a c-Jun-dependent manner. Knockout of ATF3 protected mice from bleomycin-induced fibrosis and fibrosis induced by overexpression of a constitutively active TGFß receptor I. Reporter assays and analyses of the expression of Smad target genes demonstrated that binding of ATF3 regulates the transcriptional activity of Smad3. CONCLUSIONS: We demonstrate for the first time a key role for ATF3 in fibrosis. Knockout of the ATF3 gene reduced the stimulatory effect of TGFß on fibroblasts by interfering with canonical Smad signalling and protected the mice from experimental fibrosis in two different models. ATF3 might thus be a candidate for molecular targeted therapies for SSc.


Assuntos
Fator 3 Ativador da Transcrição/genética , Fibroblastos/metabolismo , Escleroderma Sistêmico/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto , Idoso , Animais , Western Blotting , Estudos de Casos e Controles , Derme/citologia , Feminino , Fibrose/genética , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Escleroderma Sistêmico/metabolismo , Transdução de Sinais/genética , Fator de Transcrição AP-1/metabolismo , Adulto Jovem
11.
Oncotarget ; 6(35): 37737-49, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26497998

RESUMO

The c-Jun Dimerization Protein 2, JDP2, is a basic leucine zipper protein member of the activator protein-1 (AP-1) family of transcription factors. JDP2 typically suppresses gene transcription through multiple mechanisms and plays a dual role in multiple cellular processes, including cell differentiation and proliferation which is dependent on AP-1 function. Whereas the role of JDP2 expression within cancer cells has been studied, its role in stromal cells at the tumor microenvironment is largely unknown. Here we show that mice lacking JDP2 (JDP2-/-) display a reduced rate of metastasis in Lewis lung carcinoma (LLC) and polyoma middle T-antigen (PyMT) breast carcinoma mouse models. The replacement of wild-type bone marrow derived cells (BMDCs) with JDP2-deficient BMDCs recapitulates the metastatic phenotype of JDP2-/- tumor-bearing mice. In vitro, conditioned medium of wild-type BMDCs significantly potentiates the migration and invasion capacity of LLC cells as compared to that of JDP2-/- BMDCs. Furthermore, wild-type BMDCs secrete CCL5, a chemokine known to contribute to metastasis, to a greater extent than JDP2-/- BMDCs. The supplementation of CCL5 in JDP2-/- BMDC conditioned medium was sufficient to potentiate the invasion capacity of LLC. Overall, this study suggests that JDP2-expressing BMDCs within the tumor microenvironment contribute to metastatic spread.


Assuntos
Transplante de Medula Óssea , Carcinoma Pulmonar de Lewis/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Animais/patologia , Proteínas Repressoras/fisiologia , Animais , Apoptose , Western Blotting , Carcinoma Pulmonar de Lewis/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Células HEK293 , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/metabolismo , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Blood ; 123(13): 2084-93, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24470589

RESUMO

Expression of the activating transcription factor 3 (ATF3) gene is induced by Toll-like receptor (TLR) signaling. In turn, ATF3 protein inhibits the expression of various TLR-driven proinflammatory genes. Given its counter-regulatory role in diverse innate immune responses, we defined the effects of ATF3 on neutrophilic airway inflammation in mice. ATF3 deletion was associated with increased lipopolysaccharide (LPS)-driven airway epithelia production of CXCL1, but not CXCL2, findings concordant with a consensus ATF3-binding site identified solely in the Cxcl1 promoter. Unexpectedly, ATF3-deficient mice did not exhibit increased airway neutrophilia after LPS challenge. Bone marrow chimeras revealed a specific reduction in ATF3(-/-) neutrophil recruitment to wild-type lungs. In vitro, ATF3(-/-) neutrophils exhibited a profound chemotaxis defect. Global gene expression analysis identified ablated Tiam2 expression in ATF3(-/-) neutrophils. TIAM2 regulates cellular motility by activating Rac1-mediated focal adhesion disassembly. Notably, ATF3(-/-) and ATF3-sufficient TIAM2 knockdown neutrophils, both lacking TIAM2, exhibited increased focal complex area, along with excessive CD11b-mediated F-actin polymerization. Together, our data describe a dichotomous role for ATF3-mediated regulation of neutrophilic responses: inhibition of neutrophil chemokine production but promotion of neutrophil chemotaxis.


Assuntos
Fator 3 Ativador da Transcrição/fisiologia , Doenças do Sistema Imunitário/genética , Transtornos Leucocíticos/genética , Fator 3 Ativador da Transcrição/genética , Animais , Células Cultivadas , Quimiocina CXCL1/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/citologia , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/genética , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo
13.
J Clin Invest ; 123(7): 2893-906, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23921126

RESUMO

Host response to cancer signals has emerged as a key factor in cancer development; however, the underlying molecular mechanism is not well understood. In this report, we demonstrate that activating transcription factor 3 (ATF3), a hub of the cellular adaptive response network, plays an important role in host cells to enhance breast cancer metastasis. Immunohistochemical analysis of patient tumor samples revealed that expression of ATF3 in stromal mononuclear cells, but not cancer epithelial cells, is correlated with worse clinical outcomes and is an independent predictor for breast cancer death. This finding was corroborated by data from mouse models showing less efficient breast cancer metastasis in Atf3-deficient mice than in WT mice. Further, mice with myeloid cell-selective KO of Atf3 showed fewer lung metastases, indicating that host ATF3 facilitates metastasis, at least in part, by its function in macrophage/myeloid cells. Gene profiling analyses of macrophages from mouse tumors identified an ATF3-regulated gene signature that could distinguish human tumor stroma from distant stroma and could predict clinical outcomes, lending credence to our mouse models. In conclusion, we identified ATF3 as a regulator in myeloid cells that enhances breast cancer metastasis and has predictive value for clinical outcomes.


Assuntos
Fator 3 Ativador da Transcrição/fisiologia , Imunidade Adaptativa , Neoplasias da Mama/metabolismo , Neoplasias Pulmonares/metabolismo , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Movimento Celular , Técnicas de Cocultura , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/secundário , Macrófagos/imunologia , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise Multivariada , Transplante de Neoplasias , Células Neoplásicas Circulantes , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise Serial de Tecidos , Transcriptoma , Carga Tumoral , Células Tumorais Cultivadas
14.
PLoS One ; 7(7): e39448, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768301

RESUMO

Elevated circulating cholesterol is a systemic risk factor for cardiovascular disease and metabolic syndrome, however the manner in which the normal prostate responds to variations in cholesterol levels is poorly understood. In this study we addressed the molecular and cellular effects of elevated and suppressed levels of circulating cholesterol on the normal prostate. Integrated bioinformatic analysis was performed using DNA microarray data from two experimental formats: (1) ventral prostate from male mice with chronically elevated circulating cholesterol and (2) human prostate cells exposed acutely to cholesterol depletion. A cholesterol-sensitive gene expression network was constructed from these data and the transcription factor ATF3 was identified as a prominent node in the network. Validation experiments confirmed that elevated cholesterol reduced ATF3 expression and enhanced proliferation of prostate cells, while cholesterol depletion increased ATF3 levels and inhibited proliferation. Cholesterol reduction in vivo alleviated dense lymphomononuclear infiltrates in the periprostatic adipose tissue, which were closely associated with nerve tracts and blood vessels. These findings open new perspectives on the role of cholesterol in prostate health, and provide a novel role for ATF3, and associated proteins within a large signaling network, as a cholesterol-sensing mechanism.


Assuntos
Fator 3 Ativador da Transcrição/biossíntese , Proliferação de Células , Colesterol/sangue , Próstata/metabolismo , Transdução de Sinais/fisiologia , Tecido Adiposo/metabolismo , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos SCID , Análise de Sequência com Séries de Oligonucleotídeos/métodos
15.
Mol Cell Biol ; 32(16): 3190-202, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22665497

RESUMO

Activating transcription factor 3 (ATF3) is a common mediator of cellular stress response signaling and is often aberrantly expressed in prostate cancer. We report here that ATF3 can directly bind the androgen receptor (AR) and consequently repress AR-mediated gene expression. The ATF3-AR interaction requires the leucine zipper domain of ATF3 that independently binds the DNA-binding and ligand-binding domains of AR, and the interaction prevents AR from binding to cis-acting elements required for expression of androgen-dependent genes while inhibiting the AR N- and C-terminal interaction. The functional consequences of the loss of ATF3 expression include increased transcription of androgen-dependent genes in prostate cancer cells that correlates with increased ability to grow in low-androgen-containing medium and increased proliferative activity of the prostate epithelium in ATF3 knockout mice that is associated with prostatic hyperplasia. Our results thus demonstrate that ATF3 is a novel repressor of androgen signaling that can inhibit AR functions, allowing prostate cells to restore homeostasis and maintain integrity in the face of a broad spectrum of intrinsic and environmental insults.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Fator 3 Ativador da Transcrição/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Epitélio/metabolismo , Regulação da Expressão Gênica , Homeostase , Humanos , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Próstata/metabolismo , Estrutura Terciária de Proteína
16.
Nat Med ; 18(1): 128-34, 2011 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-22179317

RESUMO

Sepsis, sepsis-induced hyperinflammation and subsequent sepsis-associated immunosuppression (SAIS) are important causes of death. Here we show in humans that the loss of the major reactive oxygen species (ROS) scavenger, glutathione (GSH), during SAIS directly correlates with an increase in the expression of activating transcription factor 3 (ATF3). In endotoxin-stimulated monocytes, ROS stress strongly superinduced NF-E2-related factor 2 (NRF2)-dependent ATF3. In vivo, this ROS-mediated superinduction of ATF3 protected against endotoxic shock by inhibiting innate cytokines, as Atf3(-/-) mice remained susceptible to endotoxic shock even under conditions of ROS stress. Although it protected against endotoxic shock, this ROS-mediated superinduction of ATF3 caused high susceptibility to bacterial and fungal infections through the suppression of interleukin 6 (IL-6). As a result, Atf3(-/-) mice were protected against bacterial and fungal infections, even under conditions of ROS stress, whereas Atf3(-/-)Il6(-/-) mice were highly susceptible to these infections. Moreover, in a model of SAIS, secondary infections caused considerably less mortality in Atf3(-/-) mice than in wild-type mice, indicating that ROS-induced ATF3 crucially determines susceptibility to secondary infections during SAIS.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Coinfecção/imunologia , Glutationa/metabolismo , Tolerância Imunológica , Interleucina-6/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Choque Séptico/imunologia , Fator 3 Ativador da Transcrição/genética , Animais , Coinfecção/microbiologia , Feminino , Regulação da Expressão Gênica , Glutationa/sangue , Humanos , Interleucina-6/genética , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/sangue , Choque Séptico/metabolismo , Transdução de Sinais
17.
PLoS One ; 6(4): e18146, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21541314

RESUMO

BACKGROUND: The combination of elevated glucose and free-fatty acids (FFA), prevalent in diabetes, has been suggested to be a major contributor to pancreatic ß-cell death. This study examines the synergistic effects of glucose and FFA on ß-cell apoptosis and the molecular mechanisms involved. Mouse insulinoma cells and primary islets were treated with palmitate at increasing glucose and effects on apoptosis, endoplasmic reticulum (ER) stress and insulin receptor substrate (IRS) signaling were examined. PRINCIPAL FINDINGS: Increasing glucose (5-25 mM) with palmitate (400 µM) had synergistic effects on apoptosis. Jun NH2-terminal kinase (JNK) activation peaked at the lowest glucose concentration, in contrast to a progressive reduction in IRS2 protein and impairment of insulin receptor substrate signaling. A synergistic effect was observed on activation of ER stress markers, along with recruitment of SREBP1 to the nucleus. These findings were confirmed in primary islets. The above effects associated with an increase in glycogen synthase kinase 3ß (Gsk3ß) activity and were reversed along with apoptosis by an adenovirus expressing a kinase dead Gsk3ß. CONCLUSIONS/SIGNIFICANCE: Glucose in the presence of FFA results in synergistic effects on ER stress, impaired insulin receptor substrate signaling and Gsk3ß activation. The data support the importance of controlling both hyperglycemia and hyperlipidemia in the management of Type 2 diabetes, and identify pancreatic islet ß-cell Gsk3ß as a potential therapeutic target.


Assuntos
Apoptose/efeitos dos fármacos , Glucose/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/enzimologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ácido Palmítico/farmacologia , Fator 3 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Ativação Enzimática/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Estresse Fisiológico/efeitos dos fármacos
18.
Cancer Res ; 70(24): 10265-76, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21159647

RESUMO

Metallothioneins (MT) are potent scavengers of free radicals that are silenced in primary hepatocellular carcinomas (HCC) of human and rodent origin. To examine whether loss of MT promotes hepatocarcinogenesis, male Mt-1 and Mt-2 double knockout (MTKO) and wild-type (WT) mice were exposed to diethylnitrosamine (DEN) and induction of HCC was monitored at 23 and 33 weeks. The size and number of liver tumors, the ratio between liver and body weight, and liver damage were markedly elevated in the MTKO mice at both time points compared with the WT mice. At 23 weeks, MTKO mice developed HCC whereas WT mice developed only preneoplastic nodules suggesting that loss of MT accelerates hepatocarcinogenesis. MTKO tumors also exhibited higher superoxide anion levels. Although NF-κB activity increased in the liver nuclear extracts of both genotypes after DEN exposure, the complex formed in MTKO mice was predominantly p50/65 heterodimer (transcriptional activator) as opposed to p50 homodimer (transcriptional repressor) in WT mice. Phosphorylation of p65 at Ser276 causing its activation was also significantly augmented in DEN-exposed MTKO livers. NF-κB targets that include early growth response genes and proinflammatory cytokines were significantly upregulated in MTKO mice. Concurrently, there was a remarkable increase (∼100-fold) in Pai-1 expression; significant increase in c-Jun, c-Fos, c-Myc, Ets2, and ATF3 expressions; and growth factor signaling that probably contributed to the increased tumor growth in MTKO mice. Taken together, these results demonstrate that MTs protect mice from hepatocarcinogen-induced liver damage and carcinogenesis, underscoring their potential therapeutic application against hepatocellular cancer.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Metalotioneína/deficiência , NF-kappa B/genética , Animais , Transformação Celular Neoplásica/induzido quimicamente , Dietilnitrosamina , Regulação Neoplásica da Expressão Gênica , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Masculino , Metalotioneína/metabolismo , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosforilação , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proto-Oncogenes , Serpina E2/biossíntese , Serpina E2/genética , Transdução de Sinais , Superóxidos/metabolismo
19.
Gene Expr ; 15(1): 1-11, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21061913

RESUMO

Activating transcription factor 3 (ATF3) gene encodes a member of the ATF family of transcription factors and is induced by various stress signals. All members of this family share the basic region-leucine zipper (bZip) DNA binding motif and bind to the consensus sequence TGACGTCA in vitro. Previous reviews and an Internet source have covered the following topics: the nomenclature of ATF proteins, the history of their discovery, the potential interplays between ATFs and other bZip proteins, ATF3-interacting proteins, ATF3 target genes, and the emerging roles of ATF3 in cancer and immunity (see footnote 1). In this review, we present evidence and clues that prompted us to put forth the idea that ATF3 functions as a "hub" of the cellular adaptive-response network. We will then focus on the roles of ATF3 in modulating inflammatory response. Inflammation is increasingly recognized to play an important role for the development of many diseases. Putting this in the context of the hub idea, we propose that modulation of inflammation by ATF3 is a unifying theme for the potential involvement of ATF3 in various diseases.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Adaptação Fisiológica , Inflamação/etiologia , Inflamação/metabolismo , Transdução de Sinais , Fator 3 Ativador da Transcrição/química , Fator 3 Ativador da Transcrição/genética , Sequência de Aminoácidos , Animais , Humanos , Inflamação/genética , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional
20.
J Cell Sci ; 123(Pt 20): 3558-65, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20930144

RESUMO

The activating transcription factor 3 (ATF3) gene is induced by a variety of signals, including many of those encountered by cancer cells. We present evidence that ATF3 is induced by TGFß in the MCF10CA1a breast cancer cells and plays an integral role for TGFß to upregulate its target genes snail, slug and twist, and to enhance cell motility. Furthermore, ATF3 upregulates the expression of the TGFb gene itself, forming a positive-feedback loop for TGFß signaling. Functionally, ectopic expression of ATF3 leads to morphological changes and alterations of markers consistent with epithelial-to-mesenchymal transition (EMT). It also leads to features associated with breast-cancer-initiating cells: increased CD24(low)-CD44(high) population of cells, mammosphere formation and tumorigenesis. Conversely, knockdown of ATF3 reduces EMT, CD24(low)-CD44(high) cells and mammosphere formation. Importantly, knocking down twist, a downstream target, reduces the ability of ATF3 to enhance mammosphere formation, indicating the functional significance of twist in ATF3 action. To our knowledge, this is the first report demonstrating the ability of ATF3 to enhance breast cancer-initiating cell features and to feedback on TGFß. Because ATF3 is an adaptive-response gene and is induced by various stromal signals, these findings have significant implications for how the tumor microenvironment might affect cancer development.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator 3 Ativador da Transcrição/genética , Neoplasias da Mama/genética , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Receptores de Hialuronatos/metabolismo , Immunoblotting , Imunoprecipitação , Células-Tronco Neoplásicas/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA