Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 5913, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219211

RESUMO

Over the last 3 decades ATP-dependent chromatin remodelers have been thought to recognize chromatin at the level of single nucleosomes rather than higher-order organization of more than one nucleosome. We show the yeast ISW1a remodeler has such higher-order structural specificity, as manifested by large allosteric changes that activate the nucleosome remodeling and spacing activities of ISW1a when bound to dinucleosomes. Although the ATPase domain of Isw1 docks at the SHL2 position when ISW1a is bound to either mono- or di-nucleosomes, there are major differences in the interactions of the catalytic subunit Isw1 with the acidic pocket of nucleosomes and the accessory subunit Ioc3 with nucleosomal DNA. By mutational analysis and uncoupling of ISW1a's dinucleosome specificity, we find that dinucleosome recognition is required by ISW1a for proper chromatin organization at promoters; as well as transcription regulation in combination with the histone acetyltransferase NuA4 and histone H2A.Z exchanger SWR1.


Assuntos
Adenosina Trifosfatases/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Animais , Regulação da Expressão Gênica , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Salmão , Fatores de Transcrição/metabolismo , Xenopus
2.
Nat Commun ; 8: 15616, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28604691

RESUMO

ATP-dependent chromatin remodellers modulate nucleosome dynamics by mobilizing or disassembling nucleosomes, as well as altering nucleosome composition. These chromatin remodellers generally function by translocating along nucleosomal DNA at the H3-H4 interface of nucleosomes. Here we show that, unlike other remodellers, INO80 translocates along DNA at the H2A-H2B interface of nucleosomes and persistently displaces DNA from the surface of H2A-H2B. DNA translocation and DNA torsional strain created near the entry site of nucleosomes by INO80 promotes both the mobilization of nucleosomes and the selective exchange of H2A.Z-H2B dimers out of nucleosomes and replacement by H2A-H2B dimers without any additional histone chaperones. We find that INO80 translocates and mobilizes H2A.Z-containing nucleosomes more efficiently than those containing H2A, partially accounting for the preference of INO80 to replace H2A.Z with H2A. Our data suggest that INO80 has a mechanism for dimer exchange that is distinct from other chromatin remodellers including its paralogue SWR1.


Assuntos
Adenosina Trifosfatases/genética , Montagem e Desmontagem da Cromatina/genética , DNA Fúngico/genética , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
Cell Rep ; 18(9): 2135-2147, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28249160

RESUMO

The SWI/SNF chromatin remodeling complex is highly conserved from yeast to human, and aberrant SWI/SNF complexes contribute to human disease. The Snf5/SMARCB1/INI1 subunit of SWI/SNF is a tumor suppressor frequently lost in pediatric rhabdoid cancers. We examined the effects of Snf5 loss on the composition, nucleosome binding, recruitment, and remodeling activities of yeast SWI/SNF. The Snf5 subunit is shown by crosslinking-mass spectrometry (CX-MS) and subunit deletion analysis to interact with the ATPase domain of Snf2 and to form a submodule consisting of Snf5, Swp82, and Taf14. Snf5 promotes binding of the Snf2 ATPase domain to nucleosomal DNA and enhances the catalytic and nucleosome remodeling activities of SWI/SNF. Snf5 is also required for SWI/SNF recruitment by acidic transcription factors. RNA-seq analysis suggests that both the recruitment and remodeling functions of Snf5 are required in vivo for SWI/SNF regulation of gene expression. Thus, loss of SNF5 alters the structure and function of SWI/SNF.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases/metabolismo , Núcleo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Expressão Gênica/fisiologia , Nucleossomos/metabolismo , Subunidades Proteicas/metabolismo , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA