Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 26766, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27230693

RESUMO

A delay in the completion of metaphase induces a stress response that inhibits further cell proliferation or induces apoptosis. This response is thought to protect against genomic instability and is important for the effects of anti-mitotic cancer drugs. Here, we show that mitotic arrest induces a caspase-dependent DNA damage response (DDR) at telomeres in non-apoptotic cells. This pathway is under the control of Mcl-1 and other Bcl-2 family proteins and requires caspase-9, caspase-3/7 and the endonuclease CAD/DFF40. The gradual caspase-dependent loss of the shelterin complex protein TRF2 from telomeres promotes a DDR that involves DNA-dependent protein kinase (DNA-PK). Suppression of mitotic telomere damage by enhanced expression of TRF2, or the inhibition of either caspase-3/7 or DNA-PK during mitotic arrest, promotes subsequent cell survival. Thus, we demonstrate that mitotic stress is characterised by the sub-apoptotic activation of a classical caspase pathway, which promotes telomere deprotection, activates DNA damage signalling, and determines cell fate in response to a prolonged delay in mitosis.


Assuntos
Apoptose , Caspases/metabolismo , Dano ao DNA , Pontos de Checagem da Fase M do Ciclo Celular , Telômero/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Caspase 9/metabolismo , Linhagem Celular , Sobrevivência Celular , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Estresse Fisiológico
2.
Open Biol ; 5(3): 140156, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25761368

RESUMO

Anti-cancer drugs that disrupt mitosis inhibit cell proliferation and induce apoptosis, although the mechanisms of these responses are poorly understood. Here, we characterize a mitotic stress response that determines cell fate in response to microtubule poisons. We show that mitotic arrest induced by these drugs produces a temporally controlled DNA damage response (DDR) characterized by the caspase-dependent formation of γH2AX foci in non-apoptotic cells. Following exit from a delayed mitosis, this initial response results in activation of DDR protein kinases, phosphorylation of the tumour suppressor p53 and a delay in subsequent cell cycle progression. We show that this response is controlled by Mcl-1, a regulator of caspase activation that becomes degraded during mitotic arrest. Chemical inhibition of Mcl-1 and the related proteins Bcl-2 and Bcl-xL by a BH3 mimetic enhances the mitotic DDR, promotes p53 activation and inhibits subsequent cell cycle progression. We also show that inhibitors of DDR protein kinases as well as BH3 mimetics promote apoptosis synergistically with taxol (paclitaxel) in a variety of cancer cell lines. Our work demonstrates the role of mitotic DNA damage responses in determining cell fate in response to microtubule poisons and BH3 mimetics, providing a rationale for anti-cancer combination chemotherapies.


Assuntos
Dano ao DNA , Mitose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Histonas/metabolismo , Humanos , Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Mitose/genética , Modelos Biológicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Nocodazol/farmacologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Transdução de Sinais , Moduladores de Tubulina/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
J Cell Sci ; 127(Pt 13): 2811-7, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24794496

RESUMO

Defects in SLX4, a scaffold for DNA repair nucleases, result in Fanconi anemia (FA), due to the defective repair of inter-strand DNA crosslinks (ICLs). Some FA patients have an SLX4 deletion removing two tandem UBZ4-type ubiquitin-binding domains that are implicated in protein recruitment to sites of DNA damage. Here, we show that human SLX4 is recruited to sites of ICL induction but that the UBZ-deleted form of SLX4 in cells from FA patients is not. SLX4 recruitment does not require either the ubiquitylation of FANCD2 or the E3 ligases RNF8, RAD18 and BRCA1. We show that the first (UBZ-1) but not the second UBZ domain of SLX4 binds to ubiquitin polymers, with a preference for K63-linked chains. Furthermore, UBZ-1 is required for SLX4 recruitment to ICL sites and for efficient ICL repair in murine fibroblasts. The SLX4 UBZ-2 domain does not bind to ubiquitin in vitro or contribute to ICL repair, but it is required for the resolution of Holliday junctions in vivo. These data shed light on SLX4 recruitment, and they point to the existence of currently unidentified ubiquitylated ligands and E3 ligases that are crucial for ICL repair.


Assuntos
Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Recombinases/genética , Ubiquitina/metabolismo , Animais , Sítios de Ligação , DNA/genética , DNA/metabolismo , Reparo do DNA , Humanos , Camundongos , Estrutura Terciária de Proteína , Recombinases/metabolismo
4.
Nat Genet ; 43(2): 138-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21240277

RESUMO

DNA interstrand crosslink repair requires several classes of proteins, including structure-specific endonucleases and Fanconi anemia proteins. SLX4, which coordinates three separate endonucleases, was recently recognized as an important regulator of DNA repair. Here we report the first human individuals found to have biallelic mutations in SLX4. These individuals, who were previously diagnosed as having Fanconi anemia, add SLX4 as an essential component to the FA-BRCA genome maintenance pathway.


Assuntos
Anemia de Fanconi/genética , Recombinases/genética , Alelos , Camptotecina/farmacologia , Criança , Reagentes de Ligações Cruzadas/farmacologia , Reparo do DNA , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico/química , Humanos , Imunoprecipitação , Masculino , Mitomicina/farmacologia , Mutação , Fenótipo
5.
Mol Cell ; 35(1): 116-27, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19595721

RESUMO

Budding yeast Slx4 interacts with the structure-specific endonuclease Slx1 to ensure completion of ribosomal DNA replication. Slx4 also interacts with the Rad1-Rad10 endonuclease to control cleavage of 3' flaps during repair of double-strand breaks (DSBs). Here we describe the identification of human SLX4, a scaffold for DNA repair nucleases XPF-ERCC1, MUS81-EME1, and SLX1. SLX4 immunoprecipitates show SLX1-dependent nuclease activity toward Holliday junctions and MUS81-dependent activity toward other branched DNA structures. Furthermore, SLX4 enhances the nuclease activity of SLX1, MUS81, and XPF. Consistent with a role in processing recombination intermediates, cells depleted of SLX4 are hypersensitive to genotoxins that cause DSBs and show defects in the resolution of interstrand crosslink-induced DSBs. Depletion of SLX4 causes a decrease in DSB-induced homologous recombination. These data show that SLX4 is a regulator of structure-specific nucleases and that SLX4 and SLX1 are important regulators of genome stability in human cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Endonucleases/metabolismo , Recombinases/metabolismo , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Ligação Proteica , RNA Interferente Pequeno/genética , Recombinases/genética , Transfecção , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA