Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 131(16)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34396987

RESUMO

Chimeric antigen receptor (CAR) T cells have induced remarkable antitumor responses in B cell malignancies. Some patients do not respond because of T cell deficiencies that hamper the expansion, persistence, and effector function of these cells. We used longitudinal immune profiling to identify phenotypic and pharmacodynamic changes in CD19-directed CAR T cells in patients with chronic lymphocytic leukemia (CLL). CAR expression maintenance was also investigated because this can affect response durability. CAR T cell failure was accompanied by preexisting T cell-intrinsic defects or dysfunction acquired after infusion. In a small subset of patients, CAR silencing was observed coincident with leukemia relapse. Using a small molecule inhibitor, we demonstrated that the bromodomain and extra-terminal (BET) family of chromatin adapters plays a role in downregulating CAR expression. BET protein blockade also ameliorated CAR T cell exhaustion as manifested by inhibitory receptor reduction, enhanced metabolic fitness, increased proliferative capacity, and enriched transcriptomic signatures of T cell reinvigoration. BET inhibition decreased levels of the TET2 methylcytosine dioxygenase, and forced expression of the TET2 catalytic domain eliminated the potency-enhancing effects of BET protein targeting in CAR T cells, providing a mechanism linking BET proteins and T cell dysfunction. Thus, modulating BET epigenetic readers may improve the efficacy of cell-based immunotherapies.


Assuntos
Imunoterapia Adotiva , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Proteínas/antagonistas & inibidores , Proteínas/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Antígenos CD19/imunologia , Azepinas/farmacologia , Epigênese Genética , Glicólise/efeitos dos fármacos , Humanos , Tolerância Imunológica , Memória Imunológica , Leucemia Linfocítica Crônica de Células B/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Receptores de Antígenos Quiméricos/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Triazóis/farmacologia
2.
Immunity ; 44(6): 1444-54, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27332733

RESUMO

Genetically modified T cells expressing chimeric antigen receptors (CARs) demonstrate robust responses against lineage restricted, non-essential targets in hematologic cancers. However, in solid tumors, the full potential of CAR T cell therapy is limited by the availability of cell surface antigens with sufficient cancer-specific expression. The majority of CAR targets have been normal self-antigens on dispensable hematopoietic tissues or overexpressed shared antigens. Here, we established that abnormal self-antigens can serve as targets for tumor rejection. We developed a CAR that recognized cancer-associated Tn glycoform of MUC1, a neoantigen expressed in a variety of cancers. Anti-Tn-MUC1 CAR T cells demonstrated target-specific cytotoxicity and successfully controlled tumor growth in xenograft models of T cell leukemia and pancreatic cancer. These findings demonstrate the therapeutic efficacy of CAR T cells directed against Tn-MUC1 and present aberrantly glycosylated antigens as a novel class of targets for tumor therapy with engineered T cells.


Assuntos
Adenocarcinoma/terapia , Epitopos de Linfócito T/imunologia , Imunoterapia/métodos , Mucina-1/imunologia , Linfócitos T/fisiologia , Adenocarcinoma/imunologia , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Engenharia Genética , Glicosilação , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos , Mucina-1/química , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Vet Microbiol ; 182: 102-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26711035

RESUMO

Ebolaviruses and marburgviruses belong to the Filoviridae family and often cause severe, fatal hemorrhagic fever in humans and non-human primates. The magnitude of the 2014 outbreak in West Africa and the unprecedented emergence of Ebola virus disease (EVD) in the United States underscore the urgency to better understand the dynamics of Ebola virus infection, transmission and spread. To date, the susceptibility and possible role of domestic animals and pets in the transmission cycle and spread of EVD remains unclear. We utilized infectious VSV recombinants and lentivirus pseudotypes expressing the EBOV surface glycoprotein (GP) to assess the permissiveness of canine and feline cells to EBOV GP-mediated entry. We observed a general restriction in EBOV-mediated infection of primary canine and feline cells. To address the entry mechanism, we used cells deficient in NPC1, a host protein implicated in EBOV entry, and a pharmacological blockade of cholesterol transport, to show that an NPC1-dependent mechanism of EBOV entry is conserved in canine and feline cells. These data demonstrate that cells of canine and feline origin are susceptible to EBOV GP mediated infection; however, infectivity of these cells is reduced significantly compared to controls. Moreover, these data provide new insights into the mechanism of EBOV GP mediated entry into cells of canine and feline origin.


Assuntos
Ebolavirus/fisiologia , Fibroblastos/virologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Gatos , Células Cultivadas , Cães , Ebolavirus/classificação , Fibroblastos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Especificidade da Espécie , Proteínas Virais de Fusão , Internalização do Vírus
4.
Cancer Biol Ther ; 8(16): 1567-76, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19502791

RESUMO

Constitutive classical NFkappaB activation has been implicated in the development of pancreatic cancer, and inhibition of classical NFkappaB signaling sensitizes pancreatic cancer cells to apoptosis. However, the role of the more recently described non-canonical NFkappaB pathway has not been specifically addressed in pancreatic cancer. The non-canonical pathway requires stabilization of NIK and IKKalpha-dependent phosphorylation and processing of NFkappaB2/p100 to p52. This leads to the activation of p52-RelB heterodimers that regulate genes encoding lymphoid-specific chemokines and cytokines. We performed qRT-PCR to detect gene expression in a panel of pancreatic ductal adenocarcinoma cell lines (BxPC-3, PCA-2, PANC-1, Capan-1, Hs-766T, AsPC-1, MiaPACA-2) and found only modest elevation of classical NFkappaB-dependent genes. In contrast, each of the tumor cell lines displayed dramatically elevated levels of subsets of the non-canonical NFkappaB target genes CCL19, CCL21, CXCL12, CXCL13 and BAFF. Consistent with activation of the non-canonical pathway, p52 and RelB co-localized in adenocarcinoma cells in sections of pancreatic tumor tissue, and each of the tumor cell lines displayed elevated p52 levels. Furthermore, p52 and RelB co-immunoprecipitated from pancreatic cancer cells and immunoblotting revealed that NIK was stabilized and p100 was constitutively phosphorylated in a subset of the cell lines. Finally, stable overexpression of dominant negative IKKalpha significantly inhibited non-canonical target gene expression in BxPC-3 cells. These findings therefore demonstrate that the non-canonical NFkappaB pathway is constitutively active and functional in pancreatic cancer cells.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , NF-kappa B/metabolismo , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Immunoblotting , Imuno-Histoquímica , NF-kappa B/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Transdução de Sinais , Fator de Transcrição RelB/metabolismo
5.
Proc Natl Acad Sci U S A ; 106(9): 3360-5, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19211796

RESUMO

Mesothelin is a cell-surface molecule over-expressed on a large fraction of carcinomas, and thus is an attractive target of immunotherapy. A molecularly targeted therapy for these cancers was created by engineering T cells to express a chimeric receptor with high affinity for human mesothelin. Lentiviral vectors were used to express a single-chain variable fragment that binds mesothelin and that is fused to signaling domains derived from T-cell receptor zeta, CD28, and CD137 (4-1BB). When stimulated by mesothelin, lentivirally transduced T cells were induced to proliferate, express the antiapoptotic gene Bcl-X(L), and secrete multiple cytokines, all features characteristic of central memory T cells. When transferred intratumorally or intravenously into NOD/scid/IL2rgamma(-/-) mice engrafted with large pre-established tumors, the engineered T cells reduced the tumor burden, and in some cases resulted in complete eradication of the tumors at low effector-to-target ratios. Incorporation of the CD137 signaling domain specifically reprogrammed cells for multifunctional cytokine secretion and enhanced persistence of T cells. These findings have important implications for adoptive immunotherapy of cancer, especially in the context of poorly immunogenic tumors. Genetically redirected T cells have promise of targeting T lymphocytes to tumor antigens, confer resistance to the tumor microenvironment, and providing immunosurveillance.


Assuntos
Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Antígenos CD28/genética , Linhagem Celular Tumoral , Humanos , Mesotelina , Camundongos , Transdução de Sinais/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Am J Physiol Cell Physiol ; 283(1): C48-57, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12055072

RESUMO

The proinflammatory cytokine tumor necrosis factor (TNF)-alpha has been implicated in the attenuation of neutrophil spontaneous apoptosis during sepsis. Antiapoptotic signaling is principally mediated through the p60TNF receptor (p60TNFR). In neutrophils, TNF-alpha is an incomplete secretagogue and requires input from a ligated integrin(s) for neutrophil activation. In adherent neutrophils, TNF-alpha triggers association of both protein kinase C (PKC)-delta and phosphatidylinositol (PI) 3-kinase with the p60TNFR. In this study, a role for PKC-delta and PI 3-kinase in TNF-alpha-mediated antiapoptotic signaling was examined. TNF-alpha inhibited spontaneous apoptosis in fibronectin-adherent neutrophils, and this antiapoptotic signaling was blocked by the PKC-delta inhibitor rottlerin, but not by an inhibitor of Ca(2+)-dependent PKC isotypes, Go-6976. Inhibition of PI 3-kinase by LY-294002 also inhibited TNF-alpha-mediated antiapoptotic signaling. Cycloheximide blocked TNF-alpha-mediated antiapoptotic signaling, suggesting protein synthesis is required. Inhibition of either PKC-delta or PI 3-kinase attenuated TNF-alpha-mediated activation of the antiapoptotic transcription factor NFkappaB. Thus both PKC-delta and PI 3-kinase have essential roles in TNF-alpha-mediated antiapoptotic signaling in adherent neutrophils.


Assuntos
Apoptose/fisiologia , Isoenzimas/fisiologia , Neutrófilos/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteína Quinase C/fisiologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Acetofenonas/administração & dosagem , Acetofenonas/farmacologia , Adulto , Benzopiranos/administração & dosagem , Benzopiranos/farmacologia , Caspase 3 , Inibidores de Caspase , Caspases/metabolismo , Células Cultivadas , Cromonas/administração & dosagem , Cromonas/farmacologia , Cicloeximida/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/farmacologia , Humanos , Isoenzimas/antagonistas & inibidores , Morfolinas/administração & dosagem , Morfolinas/farmacologia , NF-kappa B/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C-delta , Inibidores da Síntese de Proteínas/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA