Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 13(8): 2710-2720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215574

RESUMO

Rationale: Efficient labeling methods for mesenchymal stem cells (MSCs) are crucial for tracking and understanding their behavior in regenerative medicine applications, particularly in cartilage defects. MegaPro nanoparticles have emerged as a potential alternative to ferumoxytol nanoparticles for this purpose. Methods: In this study, we employed mechanoporation to develop an efficient labeling method for MSCs using MegaPro nanoparticles and compared their effectiveness with ferumoxytol nanoparticles in tracking MSCs and chondrogenic pellets. Pig MSCs were labeled with both nanoparticles using a custom-made microfluidic device, and their characteristics were analyzed using various imaging and spectroscopy techniques. The viability and differentiation capacity of labeled MSCs were also assessed. Labeled MSCs and chondrogenic pellets were implanted into pig knee joints and monitored using MRI and histological analysis. Results: MegaPro-labeled MSCs demonstrated shorter T2 relaxation times, higher iron content, and greater nanoparticle uptake compared to ferumoxytol-labeled MSCs, without significantly affecting their viability and differentiation capacity. Post-implantation, MegaPro-labeled MSCs and chondrogenic pellets displayed a strong hypointense signal on MRI with considerably shorter T2* relaxation times compared to adjacent cartilage. The hypointense signal of both MegaPro- and ferumoxytol-labeled chondrogenic pellets decreased over time. Histological evaluations showed regenerated defect areas and proteoglycan formation with no significant differences between the labeled groups. Conclusion: Our study demonstrates that mechanoporation with MegaPro nanoparticles enables efficient MSC labeling without affecting viability or differentiation. MegaPro-labeled cells show enhanced MRI tracking compared to ferumoxytol-labeled cells, emphasizing their potential in clinical stem cell therapies for cartilage defects.


Assuntos
Doenças das Cartilagens , Transplante de Células-Tronco Mesenquimais , Nanopartículas , Animais , Suínos , Óxido Ferroso-Férrico , Células-Tronco , Cartilagem , Imageamento por Ressonância Magnética/métodos , Diferenciação Celular , Transplante de Células-Tronco Mesenquimais/métodos , Rastreamento de Células/métodos
2.
Neurotoxicology ; 85: 145-159, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34058247

RESUMO

The amyloid-beta (Aß) fibrillation process seems to execute a principal role in the neuropathology of Alzheimer's disease (AD). Accordingly, novel therapeutic plans have concentrated on the inhibition or degradation of Aß oligomers and fibrils. Biocompatible nanoparticles (NPs), e.g., gold and iron oxide NPs, take a unique capacity in redirecting Aß fibrillation kinetics; nevertheless, their impacts on AD-related memory impairment have not been adequately evaluated in vivo. Here, we examined the effect of commercial PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) on the learning and memory of an AD-animal model. The outcomes demonstrated the dose-dependent effect of SPIONs on Aß fibrillation and learning and memory processes. In vitro and in vivo findings revealed that Low doses of SPIONs inhibited Aß aggregation and ameliorated learning and memory deficit in the AD model, respectively. Enhanced level of hippocampal proteins, including brain-derived neurotrophic factor, BDNF, phosphorylated-cAMP response element-binding protein, p-CREB, and stromal interaction molecules, e.g., STIM1 and STIM2, were also observed. However, at high doses, SPIONs did not improve the detrimental impacts of Aß fibrillation on spatial memory and hippocampal proteins expression. Overall, we revealed the potential capacity of SPIONs on retrieval of behavioral and molecular manifestations of AD in vivo, which needs further investigations to determine the mechanistic effect of SPIONs in the AD conundrum.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Aprendizagem/efeitos dos fármacos , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Transtornos da Memória/tratamento farmacológico , Polietilenoglicóis/administração & dosagem , Moléculas de Interação Estromal , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Reação de Fuga/efeitos dos fármacos , Reação de Fuga/fisiologia , Aprendizagem/fisiologia , Masculino , Transtornos da Memória/metabolismo , Fragmentos de Peptídeos/toxicidade , Ratos , Ratos Wistar , Molécula 1 de Interação Estromal/metabolismo , Molécula 2 de Interação Estromal/metabolismo , Moléculas de Interação Estromal/metabolismo
3.
Environ Sci Pollut Res Int ; 28(13): 16744-16753, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33398731

RESUMO

Cancer is the second leading cause of death in the world and the third leading cause of death in Iran. It has been proven that numerous cancer cases are caused by exposure to environmental pollutants. There is a public health concern regarding an increase in exposure to carcinogens across Iran through different sources (air, food, and water) and a lack of research to address this issue. This study aims to gather data on exposure to heavy metals, polycyclic aromatic hydrocarbons (PAHs), and pesticides and their intake routes during the implementation of a national population health survey. This is a cross-sectional study of environmental pollutants in Iran, with a stratified multi-stage random sampling method, which led to 660 nationally representative samples in 132 clusters in three sequential parts. The first will be questionnaires to obtain demographics, assets, food records, air quality, and food frequency. The second will be physical measurements, including anthropometric and body composition. The third will be lab assessments that measure 26 types of environmental pollutants (7 heavy metals, 16 PAHs, and 3 pesticides) in urine, inhaled air, and consumed food and water of the population under study using ICP-MS and GS-MS devices. The results of this study will inform policymakers and the general population regarding the level of threat and will provide evidence for the development of interventional and observatory plans on the reduction of exposures to these pollutants. It could also be used to develop local standards to control contaminants through the three exposure routes. This study protocol will obtain data needed for policymakers to set surveillance systems for these pollutants at the national and provincial level to address the public concerns regarding the contamination of food, air, and water.


Assuntos
Metais Pesados , Praguicidas , Hidrocarbonetos Policíclicos Aromáticos , Saúde da População , Estudos Transversais , Monitoramento Ambiental , Humanos , Irã (Geográfico) , Metais Pesados/análise , Praguicidas/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
4.
Mol Pharm ; 18(2): 550-575, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32519875

RESUMO

The poor healing associated with chronic wounds affects millions of people worldwide through high mortality rates and associated costs. Chronic wounds present three main problems: First, the absence of a suitable environment to facilitate cell migration, proliferation, and angiogenesis; second, bacterial infection; and third, unbalanced and prolonged inflammation. Unfortunately, current therapeutic approaches have not been able to overcome these main issues and, therefore, have limited clinical success. Over the past decade, incorporating the unique advantages of nanomedicine into wound healing approaches has yielded promising outcomes. Nanomedicine is capable of stimulating various cellular and molecular mechanisms involved in the wound microenvironment via antibacterial, anti-inflammatory, and angiogenetic effects, potentially reversing the wound microenvironment from nonhealing to healing. This review briefly discusses wound healing mechanisms and pathophysiology and then highlights recent findings regarding the opportunities and challenges of using nanomedicine in chronic wound management.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Pele/lesões , Nanomedicina Teranóstica/métodos , Cicatrização/efeitos dos fármacos , Actinobacteria , Indutores da Angiogênese/administração & dosagem , Indutores da Angiogênese/farmacocinética , Animais , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Bandagens , Doença Crônica/tratamento farmacológico , Modelos Animais de Doenças , Composição de Medicamentos/métodos , Humanos , Hidrogéis/química , Nanopartículas/administração & dosagem , Neovascularização Fisiológica/efeitos dos fármacos , Fármacos Fotossensibilizantes/administração & dosagem , Terapia Fototérmica/métodos , Pele/efeitos dos fármacos , Pele/imunologia , Pele/microbiologia , Cicatrização/fisiologia
5.
ACS Appl Mater Interfaces ; 11(50): 46408-46418, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31729218

RESUMO

Recent studies suggest that cancer cell death accompanied by organelle dysfunction might be a promising approach for cancer therapy. The Golgi apparatus has a key role in cell function and may initiate signaling pathways to mitigate stress and, if irreparable, start apoptosis. It has been shown that Golgi disassembly and fragmentation under oxidative stress act as indicators for stress-mediated cell death pathways through cell cycle arrest in the G2/M phase. The present study shows that UV-induced reactive oxygen species (ROS) generation by Ag@ZnO nanoparticles (NPs) transform the Golgi structures from compressed perinuclear ribbons into detached vesicle-like structures distributed in the entire cytoplasm of melanoma cells. This study also demonstrates that Ag@ZnO NP-induced Golgi fragmentation cooccurs with G2 block of cell cycle progression, preventing cells from entering the mitosis phase. Additionally, the increased intracellular ROS production triggered by Ag@ZnO NPs upon UV exposure promoted autophagy. Taken together, Ag@ZnO NPs induce stress-related Golgi fragmentation and autophagy, finally leading to melanoma cell apoptosis. Intracellular oxidative stress generated by Ag@ZnO NPs upon UV irradiation may thus represent a targeted approach to induce cancer cell death through organelle destruction in melanoma cells, while fibroblast cells remained largely unaffected.


Assuntos
Proliferação de Células/efeitos dos fármacos , Complexo de Golgi/efeitos dos fármacos , Melanoma/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Complexo de Golgi/genética , Humanos , Melanoma/genética , Melanoma/patologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação , Espécies Reativas de Oxigênio/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Prata/química , Prata/farmacologia , Raios Ultravioleta , Óxido de Zinco/química , Óxido de Zinco/farmacologia
6.
Nanoscale ; 10(3): 1228-1233, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29292453

RESUMO

Protein unfolding induced by nanoparticles (NPs) can lead to exposure of cryptic epitopes that might dictate biological identity and affect NP biological fate (e.g., blood circulation time, biodistribution, and tumor accumulation). Here, we monitor the conformation of fluorescence resonance energy transfer (FRET)-labelled fibronectin (FN) on corona-coated gold NPs. We found that the labelled FN proteins, which directly accessed the gold NP surface, underwent more pronounced conformational changes than those associated with the protein corona via protein-protein interactions. FRET and liquid chromatography-mass spectrometry analyses demonstrated that NP size/concentration, pH change, and the level of surface coverage by the corona can tune the accessibility of labelled FN to the gold NP surface. Although some subsequently adsorbing proteins accessed the NP surface thanks to incomplete surface coverage and protein exchange (the Vroman effect), most outer-layer proteins could not directly bind to the NP surface, blocked by pre-adsorbed corona layers. This finding was also partially confirmed by isothermal titration calorimetry (ITC) analysis. These results suggest the proof-of-concept that outermost-layer proteins with modestly changed conformation rather than unfolded proteins at the gold NP surface effectively create the NPs' biological identity, which might have important implications on biological fates of gold NPs.


Assuntos
Fibronectinas/química , Nanopartículas Metálicas , Coroa de Proteína , Transferência Ressonante de Energia de Fluorescência , Ouro , Humanos , Conformação Proteica , Desdobramento de Proteína
7.
J Alzheimers Dis ; 59(4): 1187-1202, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28759965

RESUMO

It is well understood that patients with different diseases may have a variety of specific proteins (e.g., type, amount, and configuration) in their plasmas. When nanoparticles (NPs) are exposed to these plasmas, the resulting coronas may incorporate some of the disease-specific proteins. Using gold (Au) NPs with different surface properties and corona composition, we have developed a technology for the discrimination and detection of two neurodegenerative diseases, Alzheimer's disease (AD) and multiple sclerosis (MS). Applying a variety of techniques, including UV-visible spectra, colorimetric response analyses and liquid chromatography-tandem mass spectrometry, we found the corona-NP complexes, obtained from different human serums, had distinct protein composition, including some specific proteins that are known as AD and MS biomarkers. The colorimetric responses, analyzed by chemometrics and statistical methods, demonstrate promising capabilities of the technology to unambiguously identify and discriminate AD and MS. The developed colorimetric technology might enable a simple, inexpensive and rapid detection/discrimination of neurodegenerative diseases.


Assuntos
Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Nanopartículas Metálicas/química , Esclerose Múltipla/sangue , Esclerose Múltipla/diagnóstico , Coroa de Proteína/metabolismo , Ácido Cítrico , Colorimetria , Cisteamina , Feminino , Ouro , Humanos , Masculino , Polietilenoglicóis , Sensibilidade e Especificidade , Espectrometria de Fluorescência
8.
Colloids Surf B Biointerfaces ; 136: 1107-12, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26613856

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) are recognized as one of the promising nanomaterials for applications in various field of nanomedicine such as targeted imaging/drug delivery, tissue engineering, hyperthermia, and gene therapy. Besides their suitable biocompatibility, SPIONs' unique magnetic properties make them an outstanding candidate for theranostic nanomedicine. Very recent progress in the field revealed that the presence of external magnetic fields may cause considerable amount of SPIONs' agglomeration in their colloidal suspension. As variation of physicochemical properties of colloidal nanoparticles has strong effect on their biological outcomes, one can expect that the SPIONs' agglomeration in the presence of external magnetic fields could change their well-recognized biological impacts. In this case, here, we probed the cellular uptake and toxicity of the SPIONs before and after exposure to external magnetic fields. We found that the external magnetic fields can affect the biological outcome of magnetic nanoparticles.


Assuntos
Ferro/química , Magnetismo , Nanopartículas Metálicas , Cromatografia por Troca Iônica , Eletroforese em Gel de Poliacrilamida , Humanos , Células MCF-7 , Microscopia Eletrônica de Transmissão , Nanomedicina Teranóstica
9.
Nanoscale ; 7(19): 8978-94, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25920546

RESUMO

The hard corona, the protein shell that is strongly attached to the surface of nano-objects in biological fluids, is recognized as the first layer that interacts with biological objects (e.g., cells and tissues). The decoration of the hard corona (i.e., the type, amount, and conformation of the attached proteins) can define the biological fate of the nanomaterial. Recent developments have revealed that corona decoration strongly depends on the type of disease in human patients from which the plasma is obtained as a protein source for corona formation (referred to as the 'personalized protein corona'). In this study, we demonstrate that graphene oxide (GO) sheets can trigger different biological responses in the presence of coronas obtained from various types of diseases. GO sheets were incubated with plasma from human subjects with different diseases/conditions, including hypofibrinogenemia, blood cancer, thalassemia major, thalassemia minor, rheumatism, fauvism, hypercholesterolemia, diabetes, and pregnancy. Identical sheets coated with varying protein corona decorations exhibited significantly different cellular toxicity, apoptosis, and uptake, reactive oxygen species production, lipid peroxidation and nitrogen oxide levels. The results of this report will help researchers design efficient and safe, patient-specific nano biomaterials in a disease type-specific manner for clinical and biological applications.


Assuntos
Grafite/química , Coroa de Proteína/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Grafite/toxicidade , Hemólise/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Células MCF-7 , Microscopia de Força Atômica , Estresse Oxidativo/efeitos dos fármacos , Óxidos/química , Espectroscopia Fotoeletrônica , Proteínas/química , Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA