Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3615-3626, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37272929

RESUMO

Exposure to dust storm particulate matter (PM) is detrimental to kidney tissue. In this study, the impacts of chronic intake of dusty PM were explored as a major objective in a specified compartment to make a real-like dust storm (DS) model, and the role of hesperidin (HSP) as an antioxidant on kidney tissue was assessed in rats. Thirty-two male Wistar rats (200-220 g) were randomly allocated into 4 groups: CA+NS: (clean air and normal saline as a vehicle of HSP). Dusty PM and NS (DS+NS). HSP+ CA: rats received 200 mg/kg of HSP by gavage for 28 days, once daily in addition to exposure to clean air. HSP+DS: HSP plus DS. In DS groups, the animals were exposed to dust storms at a concentration of 5000-8000 µg/m3 in the chamber for 1 h daily, for 4 consecutive weeks, except Thursdays and Fridays. At the end of the experiment, the animals were sacrificed for biochemical, inflammatory, oxidative stress, molecular parameters, and histological evaluation. DS significantly enhanced blood urea nitrogen and creatinine, inflammatory (tumor necrosis factor-α, and interleukin-1ß), and oxidative stress indexes. Likewise, a significant increase was seen in mRNA Smads, collagen-I, and transforming growth factor-ß1 (TGF-ß1) expressions in the kidney. Histological findings showed contracted glomeruli and kidney structure disorder. In addition, Masson's trichrome staining demonstrated renal fibrosis. Nevertheless, HSP could significantly reverse these changes. Our data confirmed that DS results in kidney fibrosis through enhancing Smads/TGF-ß1 signaling. However, HSP was able to inhibit these changes as confirmed by histological findings.


Assuntos
Hesperidina , Nefropatias , Ratos , Masculino , Animais , Fator de Crescimento Transformador beta1/metabolismo , Hesperidina/farmacologia , Hesperidina/uso terapêutico , Material Particulado/toxicidade , Material Particulado/metabolismo , Ratos Wistar , Rim , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Fibrose , Poeira
2.
Psychopharmacology (Berl) ; 240(6): 1299-1312, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37115226

RESUMO

RATIONALE: Disorders caused by total sleep deprivation can be modulated by the administration of growth hormone, which could affect the expression of microRNA-9 and dopamine D2 receptor expressions followed by improvement in the hippocampal synaptic potential, spatial cognition, and inflammation in rats. OBJECTIVES: The present study aimed to elucidate the putative effects of exogenous growth hormone (GH) against total sleep deprivation (TSD)-induced learning and memory dysfunctions and possible involved mechanisms. METHODS: To induce TSD, rats were housed in homemade special cages equipped with stainless steel wire conductors to induce general and inconsistent TSD. They received a mild repetitive electric shock to their paws every 10 min for 21 days. GH (1 mg/kg, sc) was administered to adult young male rats once daily for 21-day-duration induction of TSD. Spatial learning and memory performance, inflammatory status, microRNA-9 (miR-9) expression, dopamine D2 receptor (DRD2) protein level, and hippocampal histological changes were assayed at scheduled times after TSD. RESULTS: The results indicated that TSD impaired spatial cognition, increased TNF-α, decreased level of miR-9, and increased DRD2 levels. Treatment with exogenous GH improved spatial cognition, decreased TNF-α, increased level of miR-9, and decreased DRD2 levels after TSD. CONCLUSIONS: Our findings suggest that GH may play a key role in the modulation of learning and memory disorders as well as the ameliorating abnormal DRD2-related functional disorders associated with miR-9 in TSD.


Assuntos
MicroRNAs , Privação do Sono , Ratos , Masculino , Animais , Privação do Sono/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Hipocampo/metabolismo , Receptores de Dopamina D2/metabolismo , Cognição , Inflamação/tratamento farmacológico , Inflamação/complicações , Hormônio do Crescimento
3.
Metab Brain Dis ; 38(5): 1671-1681, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36862276

RESUMO

Total sleep deprivation (TSD) causes several harmful changes including anxiety, inflammation, and increased expression of extracellular signal-regulated kinase (ERK) and tropomyosin receptor kinase B (TrkB) genes in the hippocampus. The current study was conducted to explain the possible effects of exogenous GH against the above parameters caused by TSD and the possible mechanisms involved. Male Wistar rats were divided into 1) control, 2) TSD and 3) TSD + GH groups. To induce TSD, the rats received a mild repetitive electric shock (2 mA, 3 s) to their paws every 10 min for 21 days. Rats in the third group received GH (1 ml/kg, sc) for 21 days as treatment for TSD. The motor coordination, locomotion, the level of IL-6, and expression of ERK and TrkB genes in hippocampal tissue were measured after TSD. The motor coordination (p < 0.001) and locomotion indices (p < 0.001) were impaired significantly by TSD. The concentrations of serum corticotropin-releasing hormone (CRH) (p < 0.001) and hippocampal interleukin-6 (IL-6) (p < 0.001) increased. However, there was a significant decrease in the interleukin-4 (IL-4) concentration and expression of ERK (p < 0.001) and TrkB (p < 0.001) genes in the hippocampus of rats with TSD. Treatment of TSD rats with GH improved motor balance (p < 0.001) and locomotion (p < 0.001), decreased serum CRH (p < 0.001), IL-6 (p < 0.01) but increased the IL-4 and expression of ERK (p < 0.001) and TrkB (p < 0.001) genes in the hippocampus. Results show that GH plays a key role in modulating the stress hormone, inflammation, and the expression of ERK and TrkB genes in the hippocampus following stress during TSD.


Assuntos
Interleucina-4 , Privação do Sono , Ratos , Masculino , Animais , Privação do Sono/complicações , Privação do Sono/tratamento farmacológico , Ratos Wistar , Hormônio do Crescimento , Interleucina-6 , Hormônio Liberador da Corticotropina , Inflamação
4.
Metab Brain Dis ; 38(4): 1379-1388, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36701014

RESUMO

Neuroinflammation is a key pathological event triggering neurodegenerative process, resulting in neurologic sequelae. Curcumin (cur) has recently received increasing attention due to its anti-inflammatory properties. Therefore, we investigated the protective effects of curcumin on lipopolysaccharide (LPS)-induced memory impairments, long-term potentiation (LTP) deficits, hippocampal inflammatory cytokines, and neuronal loss in male rats. Rats were randomly divided into four groups as follows: (1) Vehicle; (2) cur; (3) LPS; and (4) cur/LPS. Following curcumin pretreatment (50 mg/kg, per oral via gavage, 14 consecutive days), animals received a single dose of LPS (1 mg/kg, intraperitoneally) or saline. Twenty-four hours after LPS/or saline administration, passive avoidance test (PAT), hippocampal LTP, inflammatory cytokines (TNFα, IL-1ß), and neuronal loss were assessed in hippocampal tissue of rats. Our results indicated that pretreatment with curcumin in LPS-challenged rats attenuates memory impairment in PAT, which was accompanied by significant increase in the field excitatory post-synaptic potential (fEPSP) slope and population spike (PS) amplitude. Hence, pretreatment with curcumin in LPS-treated rats decreased hippocampal concentration of tumor necrosis factor-alpha (TNF-α) and interleukin-1ß (IL-1ß), as well as reduced neuronal loss in the hippocampal tissue. This study provide evidence that pretreatment with curcumin attenuates LPS-induced memory impairment and LTP deficiency, which may be partly related to the amelioration of inflammatory cytokines and neuronal loss in the hippocampal tissue.


Assuntos
Curcumina , Citocinas , Ratos , Masculino , Animais , Citocinas/metabolismo , Lipopolissacarídeos/farmacologia , Potenciação de Longa Duração , Curcumina/farmacologia , Curcumina/uso terapêutico , Hipocampo/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Fator de Necrose Tumoral alfa
5.
Neurochem Res ; 48(6): 1798-1810, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36708454

RESUMO

It has been consistently found that exposure to ambient air pollution, such as particulate matter (PM), results in cognitive impairments and mental disorders. This study aimed to investigate the possible neuroprotective effects of curcumin, a polyphenol compound, on the neurobehavioral deficits and to identify the role of oxidative stress in dusty PM exposure rats. Rats received curcumin (50 mg/kg, daily, gavage, 2 weeks) 30 min before placing animals in a clean air chamber (≤ 150 µg/m3, 60 min daily, 2 weeks) or ambient dusty PM chamber (2000-8000 µg/m3, 60 min daily, 2 weeks). Subsequently, the cognitive and non-cognitive functions of the animals were evaluated using standard behavioral tests. Moreover, blood-brain barrier (BBB) permeability, brain water content (BWC), oxidative-antioxidative status, and histological changes were determined in the cerebral cortex and hippocampal areas of the rats. Our results showed that curcumin administration in dusty PM exposure rats attenuates memory impairment, decreases anxiety-/depression-like behaviors, and improves locomotor/exploratory activities. These findings were accompanied by reduced BBB permeability and BWC, decreasing oxidative stress, and lessening neuronal loss in the cerebral cortex and different hippocampal areas. The results of this study suggest that curcumin's antioxidant properties may contribute to its efficacy in improving neurobehavioral deficits and preventing neuronal loss associated with dusty PM exposure.


Assuntos
Curcumina , Material Particulado , Ratos , Animais , Material Particulado/toxicidade , Poeira , Curcumina/farmacologia , Curcumina/uso terapêutico , Encéfalo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
6.
Behav Brain Res ; 438: 114190, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36332721

RESUMO

OBJECTIVE: Total sleep deprivation (TSD) causes several harmful changes in the brain, including memory impairment, increased stress and depression levels, as well as reduced antioxidant activity. Growth hormone (GH) has been shown to boost antioxidant levels while improving memory and depression. The present study was conducted to explain the possible effects of exogenous GH against behavioral and biochemical disorders caused by TSD and the possible mechanisms involved. MAIN METHODS: To induce TSD, rats were housed in homemade special cages equipped with stainless steel wire conductors to induce general and inconsistent TSD. They received a mild repetitive electric shock to their paws every 10 min for 21 days. GH (1 ml/kg, sc) was administered to rats during induction of TSD for 21 days. Memory retrieval, anxiety, depression-like behaviors, pain behaviors, antioxidant activity, hippocampal level of BDNF, and simultaneously brain electrical activity were measured at scheduled times after TSD. KEY FINDINGS: The results showed that GH treatment improved memory (p < 0.001) in the PAT test of rats exposed to TSD. These beneficial effects were associated with lowering the level of anxiety and depression-like behavior (p < 0.001), rising the pain threshold (p < 0.01), increasing the activity of antioxidants (p < 0.01), hippocampal BDNF (p < 0.001), and regular brain electrical activity. SIGNIFICANCE: Our findings show that GH plays a key role in modulating memory, anxiety and depression behaviors, as well as reducing oxidative stress and improve hippocampal single-unit activity in the brain during TSD.


Assuntos
Antioxidantes , Privação do Sono , Animais , Ratos , Privação do Sono/complicações , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo , Hormônio do Crescimento/uso terapêutico , Transtornos da Memória/etiologia , Transtornos da Memória/complicações
7.
Iran J Basic Med Sci ; 24(7): 881-891, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34712417

RESUMO

OBJECTIVES: Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that causes brain disturbances. Thymoquinone (TQ) has a wide spectrum of activities such as antioxidant, anti-inflammatory, and anticancer. This study aimed to evaluate the effects of TQ on spatial memory and hippocampal long-term potentiation (LTP) in rats with thioacetamide (TAA)-induced liver injury and hepatic encephalopathy. MATERIALS AND METHODS: Adult male Wistar rats were divided into six groups randomly: 1) Control; 2) HE, received TAA (200 mg/kg); 3-5) Treated groups (HE+TQ5, HE+TQ10, and HE+TQ20). TQ (5, 10, and 20 mg/kg) was injected intraperitoneally (IP) for 12 consecutive days from day 18 to 29. Subsequently, spatial memory performance was evaluated by the Morris water maze paradigm and hippocampal LTP was recorded from the dentate gyrus (DG) region. Activity levels of Malondialdehyde (MDA) and superoxide dismutase (SOD) were measured in the hippocampal tissue. RESULTS: Data showed that the hippocampal content of MDA was increased while SOD activities were decreased in TAA-induced HE. TQ treatment significantly improved spatial memory and LTP. Moreover, TQ restored the levels of MDA and SOD activities in the hippocampal tissue in HE rats. CONCLUSION: Our data confirm that TQ could attenuate cognitive impairment and improve LTP deficit by modulating the oxidative stress parameters in this model of HE, which leads to impairment of spatial cognition and LTP deficit. Thus, these results suggest that TQ may be a promising agent with positive therapeutic effects against liver failure and HE defects.

8.
Metab Brain Dis ; 36(5): 991-1002, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33620578

RESUMO

Hepatic encephalopathy (HE) is a prevalent complication of the central nervous system (CNS) that is caused by acute or chronic liver failure. This study was designed to evaluate the effects of thymoquinone (TQ) on thioacetamide (TAA)-induced HE in rats, and determine the consequential behavioral, biochemical, and histological changes. HE was induced in male Wistar rats by intraperitoneal (i.p.) injection of 200 mg/kg TAA once every 48 h for 14 consecutive days. Control groups received the normal saline containing 5 % DMSO. Thymoquinone (5, 10, and 20 mg/kg) was administered for ten consecutive days intraperitoneally (i.p.) after HE induction and it was continued until the end of the tests. Then, the passive avoidance memory, extracellular single unit, BBB permeability, and brain water content were evaluated. Moreover, hippocampal tissues were used for evaluation of oxidative stress index, inflammatory biomarkers, and histological parameters following HE. As result of the treatment, TQ improved passive avoidance memory, increased the average number of simultaneous firing of spikes/bins, improved the integrity of BBB, and decreased brain water content in the animal model of HE. Furthermore, the results indicated that treatment with TQ decreased the levels of inflammatory cytokines (TNF-α and IL-1ß) but increased the levels of glutathione (GSH) and anti-inflammatory cytokine (IL-10) of the surviving cells in the hippocampal tissues. This study demonstrates that TQ may have beneficial therapeutic effects on cognitive, oxidative stress, neuroinflammatory, and histological complications of HE in rat.


Assuntos
Benzoquinonas/farmacologia , Encefalopatia Hepática/tratamento farmacológico , Inflamação/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Memória/efeitos dos fármacos , Animais , Glutationa/metabolismo , Encefalopatia Hepática/induzido quimicamente , Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Masculino , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Tioacetamida , Fator de Necrose Tumoral alfa/metabolismo
9.
Talanta ; 146: 417-22, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26695284

RESUMO

Acrylamide is a potentially toxic and carcinogenic substance present in many high-consumption foods. Recently, this matter has been placed in category of "reasonably anticipated to be a human carcinogen" by National Toxicology Program (NTP). Therefore, simple and cost-effective determination of acrylamide in food samples has attracted intense interest. The most reported techniques for this purpose are GC-MS and LC-MS, which are very expensive and available in few laboratories. In this research, for the first time, a rapid, easy and low-cost method is introduced for sensitive and precise determination of acrylamide in foodstuffs, using gas chromatography-flame ionization detection (GC-FID) system after its direct trapping in the upper atmosphere of samples by headspace solid-phase microextraction (HS-SPME). The effects of main experimental variables were studied and the optimized parameters were obtained as the type of fiber, carboxen/divinylbenzene/polydimethylsiloxane (CAR/DVB/PDMS); extraction time, 30 min; extraction temperature, 60°C; moisture content, 10 µL water per 1g of sample; desorption time, 2 min; and desorption temperature, 230°C. The linear calibration graph was obtained in the range of 0.77-50 µg g(-1), with regression coefficient of 0.998. The detection and quantification limits of the proposed method were 0.22 and 0.77 µg g(-1), respectively. The recoveries, for different food samples, were 79.6-95.7%. The repeatability of measurements, expressed as relative standard deviation (RSD), were found to be 4.1-8.0% (n=9). The proposed HS-SPME-GC-FID method was successfully carried out for quantifying of trace levels of acrylamide in some processed food products (chips and French fries), sold in open local markets.


Assuntos
Acrilamida/análise , Acrilamida/isolamento & purificação , Cromatografia Gasosa/métodos , Contaminação de Alimentos/análise , Manipulação de Alimentos , Solanum tuberosum/química , Microextração em Fase Sólida/métodos , Acrilamida/química , Cromatografia Gasosa/normas , Padrões de Referência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA